Parasitology Research

, Volume 114, Issue 8, pp 2975–2984 | Cite as

Cytokine signature and antibody-mediated response against fresh and attenuated Anisakis simplex (L3) administration into Wistar rats: implication for anti-allergic reaction

  • Fathy Abdel-GhaffarEmail author
  • Abeer Mahmoud Badr
  • Kareem Morsy
  • Samar Ebead
  • Somaya El Deeb
  • Saleh Al Quraishy
  • Heinz Mehlhorn
Original Paper


The third larval stage (L3) of Anisakis simplex (Anisakidae) is one of the zoonotic parasitic nematodes in the musculature and visceral organs of marine fishes belonging to family Moronidae. The consumption of these high-commercial-value fish is widespread in many countries around the Mediterranean Sea including Egypt. The presence of these larvae in fish muscles poses a potential consumer hazard due to the parasite’s ability to cause anisakidosis. Forty-two out of 60 (70 %) of the European seabass Dicentrarchus labrax were found to be naturally infected by L3 of A. simplex in the form of encapsulated juveniles in the fish musculature. Morphological examination of recovered parasites by light and scanning electron microscopy showed that, in general, all specimens examined closely resembled A. simplex (L3). To evaluate the allergenicity of this nematode, white blood cell count; levels of T helper 1 (Th1) [interferon (IFN)-γ and tumor necrosis factor (TNF)-α)], Th2 [IL-4, IL-5, and IL-6], and Th17 [IL-17] related cytokines; total IgE and IgG antibodies; and nitric oxide (NO) were measured in the plasma of Wistar rats sensitized by oral inoculation with fresh, frozen, and heat-treated A. simplex L3 or rats intraperitoneally injected with L3 crude extract. Rats sensitized with fresh and frozen L3 larvae produced significantly higher levels of IFN-γ, IL-5, IL-17, and total IgE as compared to control rats. Heat-treated larvae administration resulted in a significant rise of IFN-γ, TNF-α, IL-5, and total IgE in comparison to control rats. Intraperitoneal sensitizations enhanced release of IFN-γ, TNF-α, and total IgE. Oral sensitization led to a significant production of NO. Thereby, frozen or cooked larval L3 cannot inhibit the release of Th-related cytokines and IgE, which might impact on the overall anti-parasitic immunity.


Anisakis simplex (L3) Morphology Immune response Wistar rats Fresh and attenuated antigens 



The authors extend appreciations to the Faculty of Science, Cairo University, Cairo, Egypt, and to the Deanship of Scientific Research at King Saud University for funding the work through the international research group project IRG14-23.


  1. Abdel-Ghaffar F, Bashtar AR, Abdel-Gaber R, Morsy K, Mehlhorn H, Al Quraishy S, Mohammed S (2014) Cucullanus egyptae sp. nov. (Nematoda, Cucullanidae) infecting the European eel Anguilla anguilla in Egypt. Morphological and molecular phylogenetic studies. Parasitol Res 113(9):3457–3465PubMedCrossRefGoogle Scholar
  2. Abdel-Ghaffar F, Abdel-Gaber R, Bashtar AR, Morsy K, Mehlhorn H, Al Quraishy S, Saleh R (2015) Hysterothylacium aduncum (Nematoda, Anisakidae) with a new host record from the common sole Solea solea (Soleidae) and its role as a biological indicator of pollution. Parasitol Res 14:513–522Google Scholar
  3. Abdou NE (2005) Studies on the anisakid nematode juveniles infecting some Red Sea fishes in Egypt. J Zool Invert Parasitol 47:147–160Google Scholar
  4. Anderson RC (2000) Nematode parasites of vertebrates: their development and transmission. CAB, WallingfordCrossRefGoogle Scholar
  5. Arthur JR, Margolis L, Whitaker DJ, McDonald TF (1982) A quantitative study of economically important parasites of walleye pollock (Theragra chalcogramma) from British Columbian waters and effects of postmortem handling on their abundance in the musculature. J Fish Red Board Can 39:710–726CrossRefGoogle Scholar
  6. Audicana MT, Kennedy MW (2008) Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 21(2):360–379PubMedCentralPubMedCrossRefGoogle Scholar
  7. Audicana M, Fernández de Corres L, Muñoz D, Fernández E, Navarro JA, Del Pozo MD (1995) Recurrent anaphylaxis due to Anisakis simplex parasitizing sea-fish. J Allergy Clin Immunol 96:558–560PubMedCrossRefGoogle Scholar
  8. Audicana MT, Ansotegui IJ, de Corres LF, Kennedy MW (2002) Anisakis simplex: dangerous–dead and alive? Trends Parasitol 18:20–25PubMedCrossRefGoogle Scholar
  9. Baeza ML, Conejero L, Higaki Y, Martín E, Pérez C, Infante S, Rubio M, Zubeldia JM (2005) Anisakis simplex allergy: a murine model of anaphylaxis induced by parasitic proteins displays a mixed Th1/Th2 pattern. Clin Exp Immunol 142(3):433–440PubMedCentralPubMedGoogle Scholar
  10. Bouree P, Paugam A, Petithory JC (1995) Anisakidosis: report of 25 cases and review of the literature. Comp Immunol Microbiol Infect Dis 18:75–84PubMedCrossRefGoogle Scholar
  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  12. Bush AO, Aho JM, Kennedy C (1990) Ecological versus phylogenetic determinants of helminth parasite community richness. Evol Ecol 4:1–20CrossRefGoogle Scholar
  13. Caballero ML, Moneo I (2004) Several allergens from Anisakis simplex are highly resistant to heat and pepsin treatments. Parasitol Res 93:248–251PubMedGoogle Scholar
  14. Chai J, Murrell KD, Lymbery AJ (2005) Fish-borne parasitic zoonoses: status and issues. Int J Parasitol 35:1233–1254PubMedCrossRefGoogle Scholar
  15. Chen Q, Yu HQ, Lun ZR, Chen XG, Song HQ, Lin RQ, Zhu XQ (2008) Specific PCR assays for the identification of common anisakid nematodes with zoonotic potential. Parasitol Res 104:79–84PubMedCrossRefGoogle Scholar
  16. Cho TH, Park HY, Cho S, Sohn J, Yoon YW, Cho JE, Cho SW (2006) The time-course of biological and immunochemical allergy states induced by Anisakis simplex larvae in rats. Clin Exp Immunol 143:203–208PubMedCentralPubMedCrossRefGoogle Scholar
  17. Costa G, Pontes T, Mattiucci S, Amelio SD (2003) The occurrence and infection dynamics of Anisakis larvae in the black-scabbard fish, Aphanopus carbo, chub mackerel, Scomber japonicas, and Oceanic horse mackerel, Trachurus picturatus from Adeira, Portugal. J Helminthol 77:163–166PubMedCrossRefGoogle Scholar
  18. Cruz CA, Saraiva VA (2005) Larval anisakids from horse mackerel in Portugal. Helminthologia 42(1):3–7Google Scholar
  19. Dick TA, Choudhury A (1995) Phylum Nematoda. In: Woo PTK (ed) Fish diseases and disorders, volume I protozoan and metazoan infection. Cambridge University Press, Cambridge, pp 415–446Google Scholar
  20. Dorny P, Praet N, Deckers N, Gabriel S (2009) Emerging food-borne parasites. Vet Parasitol 163:196–206PubMedCrossRefGoogle Scholar
  21. Else KJ, Finkelman FD, Maliszewski CR, Grencis RK (1994) Cytokine mediated regulation of chronic intestinal helminth infection. J Exp Med 179:347–351PubMedCrossRefGoogle Scholar
  22. Flesch IE, Kaufmann SH (1990) Activation of tuberculostatic macrophage functions by γ-interferon, interleukin-4, and tumor necrosis factor. Infect Immun 58:2675–2677PubMedCentralPubMedGoogle Scholar
  23. Flohr C, Quinnell RJ, Britton J (2009) Do helminth parasites protect against atopy 408 and allergic disease? Clin Exp Allergy 39:20–32PubMedCrossRefGoogle Scholar
  24. Grencis RK (1996) T cell and cytokine basis of host variability in response to intestinal nematode infections. Parasitology 112:S31–S37PubMedGoogle Scholar
  25. Inoue K, Oshima SI, Hirata T, Kimura I (2000) Possibility of anisakid larvae infection in farmed salmon. Fish Sci 66:1049–1052CrossRefGoogle Scholar
  26. Kennedy MW, Tierney J, Ye P, McMongle FA, McIntosh A, McLaughlin D, Smith JW (1988) The secreted and stomach antigens of the third stage larvae of Anisakis simplex, and antigenic relationship with Ascaris suum, Ascaris lumbricoides, and Toxocara canis. Mol Biochem Parasit 31:35–46Google Scholar
  27. Kinoshita Y, Fujimoto K, Lee M, Shinohara R, Kobayashi Y, Kawana S, Saeki H (2014) Two cases of allergies due to Anisakis simplex, positive to specific IgE for ani S 12 allergen. Arerugi 63(10):1348–1352PubMedGoogle Scholar
  28. Kirstein F, Horsnell WG, Kuperman DA, Huang X, Erle DJ, Lopata AL (2010) Expression of IL-4 receptor alpha on smooth muscle cells is not necessary for development of experimental allergic asthma. J Allergy Clin Immunol 126:347–354PubMedCentralPubMedCrossRefGoogle Scholar
  29. Klimpel S, Abdel-Ghaffar F, Al-Rasheid KA, Aksu G, Fischer K, Strassen B, Mehlhorn H (2011) The effects of different plant extracts on nematodes. Parasitol Res 108(4):1047–1054PubMedCrossRefGoogle Scholar
  30. Køie M (2001) Experimental infections of copepods and sticklebacks Gasterosteus aculeatus with small ensheathed and large third stage larvae of Anisakis simplex (Nematoda: Anisakidae). Parasitol Res 87:32–36PubMedCrossRefGoogle Scholar
  31. Mehlhorn H, Al-Quraishy S, Al-Rasheid KA, Jatzlau A, Abdel-Ghaffar F (2011) Addition of a combination of onion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helminthic infections. Parasitol Res 108(4):1041–1046PubMedCrossRefGoogle Scholar
  32. Min B (2008) Basophils: what they “can do” versus what they “actually do”. Nat Immunol 9(12):1333–1339PubMedCrossRefGoogle Scholar
  33. Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214(1):11–16PubMedCrossRefGoogle Scholar
  34. Moravec F (1994) Parasitic nematodes of freshwater fishes of Europe. Academia and Kluwer Academic Publishers, Prague, p 473Google Scholar
  35. Morsy K, Bashtar AR, Abdel-Ghaffar F, Mehlhorn H, Quraishy SA, Mahdi ME, Al-Ghamdi A, Mostafa N (2012) First record of anisakid juveniles (Nematoda) in the European seabass Dicentrarchus labrax (Family: Moronidae), and their role as bioindicators of heavy metal pollution. Parasitol Res 110(3):1131–1138PubMedCrossRefGoogle Scholar
  36. Morsy K, Bashtar AR, Abdel-Ghaffar F, Mostafa N (2013) New host and locality records of two nematode parasites Dujardinnascaris mujibii (Heterocheilidae) and Hysterothylacium aduncum (Anisakidae) from the common seabream Pagrus pagrus: a light and scanning electron microscopic study. Parasitol Res 112(2):807–815PubMedCrossRefGoogle Scholar
  37. Morsy K, Bashtar AR, Mostafa N, El Deeb S, Thabet S (2015) New host records of three juvenile nematodes in Egypt: Anisakis sp. (Type II), Hysterothylacium patagonense (Anisakidae), and Echinocephalus overstreeti (Gnathostomatidae) from the greater lizard fish Saurida undosquamis of the Red Sea. Parasitol Res 114(2):513–522PubMedCrossRefGoogle Scholar
  38. Mukai K, Matsuoka K, Taya C, Suzuki H, Yokozeki H, Nishioka K, Hirokawa K, Etori M, Yamashita M, Kubota T, Minegishi Y, Yonekawa H, Karasuyama H (2005) Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunology 23(2):191–202Google Scholar
  39. Noguera P, Collins C, Bruno D, Pert C, Turnbull A, McIntosh A, Lester K, Bricknell I, Wallace S, Cook P (2009) Red vent syndrome in wild Atlantic salmon Salmo salar in Scotland is associated with Anisakis simplex sensu stricto (Nematoda: Anisakidae). Dis Aquat Org 87:199–215PubMedCrossRefGoogle Scholar
  40. Pavanelli WR, Silva JJN (2010) The role of nitric oxide in immune response against Trypanosoma cruzi infection. Open Nitric Oxide J 2:1–6CrossRefGoogle Scholar
  41. Petithory JC, Marti B (1988) L’anisakiase en France. Lett l’Infectiologue 2:96Google Scholar
  42. Platt NE (1975) Infestation of cod (Codus morhua L) with larvae of cod worm (Terranova decipiens Krabbe) and herring worm, Anisakis sp. (Nematoda: Ascaridata) in the north Atlantic. J Appl Ecol 12:437–450CrossRefGoogle Scholar
  43. Podolska M, Horbowy J (2003) Infection of the Baltic herring (Clupea harengus membras) with Anisakis simplex larvae, 1992–1999: a statistical analysis using generalized linear models. J Mar Sci 60:85–93Google Scholar
  44. Post G (1987) Animal parasites of fishes: textbook of fish health. T.F.H. Publications, Inc. USA, pp. 159–214Google Scholar
  45. Randall DA, Shao Q, Moeng CH (1992) A second order bulk boundary-layer model. J Atmos Sci 49:1903–1923CrossRefGoogle Scholar
  46. Rocka A (2004) Nematodes of the Antarctic fishes. Pol Polar Res 25(2):135–152Google Scholar
  47. Shih HH, Jeng MS (2002) H. aduncum (Nematoda: Anisakidae) infecting a herbivorous fish, Siganus fuscescens, off the Taiwanese Coast of the Northwest Pacific. Zool Stud 41(2):208–215Google Scholar
  48. Shih HH, Ku CC, Wang CS (2010) Anisakis simplex (Nematoda: Anisakidae) third-stage larval infections of marine cage cultured cobia, Rachycentron canadum L., in Taiwan. Vet Parasitol 171:277–285PubMedCrossRefGoogle Scholar
  49. Shimoda K, van Deursen J, Sangster MY (1996) Lack of IL- 4 induced Th2 responses and IgE class switching in mice with disrupted STAT 6 gene. Nature 380:630–633PubMedCrossRefGoogle Scholar
  50. Smith JW (1984) The abundance of Anisakis simplex L3 in the body-cavity and flesh of marine teleosts. Int J Parasitol 14:491–495CrossRefGoogle Scholar
  51. Sugawara Y, Urawa S, Kaeriyama M (2004) Infection of Anisakis simplex (Nematoda: Anisakidae) larvae in chum salmon (Oncorhynchus keta) in the North Pacific Ocean, Bering Sea, and a river of Hokkaido. North Pacific Anadromous Fish Commission Doc 791. Hokkaido Tokai University, SapporoGoogle Scholar
  52. Takahashi S, Ishikura H, Kikuchi K (1998) Anisakidosis: global point of view. In: Ishikura H, Aikawa M, Itakura H, Kikuchi K (eds) Host response to international parasitic zoonoses. Springer, Tokyo, pp 109–120CrossRefGoogle Scholar
  53. Tsujimura Y, Obata K, Mukai K, Shindou H, Yoshida M, Nishikado H, Kawano Y, Minegishi Y, Shimizu T, Karasuyama H (2008) Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunology 28(4):581–589Google Scholar
  54. Urban JF Jr, Madden KB, Svetic A (1992) The importance of TH2 cytokines in protective immunity to nematodes. Immunol Rev 127:205–220PubMedCrossRefGoogle Scholar
  55. Van Thiel PH (1962) Anisakiasis. Parasitology 52:16–17Google Scholar
  56. Williams HH, Jones A (1994) Parasitic worms of fish. Taylor & Francis, LondonGoogle Scholar
  57. Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89(6):873–891PubMedCentralPubMedCrossRefGoogle Scholar
  58. Yazdanbakhsh M (1996) IgE, eosinophils and mast cells in helminth infections. Ned Tijdschr Klin Chem 21:213–216Google Scholar
  59. Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296:490PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fathy Abdel-Ghaffar
    • 1
    Email author
  • Abeer Mahmoud Badr
    • 1
  • Kareem Morsy
    • 1
  • Samar Ebead
    • 1
  • Somaya El Deeb
    • 1
  • Saleh Al Quraishy
    • 2
  • Heinz Mehlhorn
    • 3
  1. 1.Zoology Department, Faculty of ScienceCairo UniversityCairoEgypt
  2. 2.Zoology Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Parasitology InstituteDüsseldorf UniversityDüsseldorfGermany

Personalised recommendations