Skip to main content
Log in

Cytokine signature and antibody-mediated response against fresh and attenuated Anisakis simplex (L3) administration into Wistar rats: implication for anti-allergic reaction

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The third larval stage (L3) of Anisakis simplex (Anisakidae) is one of the zoonotic parasitic nematodes in the musculature and visceral organs of marine fishes belonging to family Moronidae. The consumption of these high-commercial-value fish is widespread in many countries around the Mediterranean Sea including Egypt. The presence of these larvae in fish muscles poses a potential consumer hazard due to the parasite’s ability to cause anisakidosis. Forty-two out of 60 (70 %) of the European seabass Dicentrarchus labrax were found to be naturally infected by L3 of A. simplex in the form of encapsulated juveniles in the fish musculature. Morphological examination of recovered parasites by light and scanning electron microscopy showed that, in general, all specimens examined closely resembled A. simplex (L3). To evaluate the allergenicity of this nematode, white blood cell count; levels of T helper 1 (Th1) [interferon (IFN)-γ and tumor necrosis factor (TNF)-α)], Th2 [IL-4, IL-5, and IL-6], and Th17 [IL-17] related cytokines; total IgE and IgG antibodies; and nitric oxide (NO) were measured in the plasma of Wistar rats sensitized by oral inoculation with fresh, frozen, and heat-treated A. simplex L3 or rats intraperitoneally injected with L3 crude extract. Rats sensitized with fresh and frozen L3 larvae produced significantly higher levels of IFN-γ, IL-5, IL-17, and total IgE as compared to control rats. Heat-treated larvae administration resulted in a significant rise of IFN-γ, TNF-α, IL-5, and total IgE in comparison to control rats. Intraperitoneal sensitizations enhanced release of IFN-γ, TNF-α, and total IgE. Oral sensitization led to a significant production of NO. Thereby, frozen or cooked larval L3 cannot inhibit the release of Th-related cytokines and IgE, which might impact on the overall anti-parasitic immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdel-Ghaffar F, Bashtar AR, Abdel-Gaber R, Morsy K, Mehlhorn H, Al Quraishy S, Mohammed S (2014) Cucullanus egyptae sp. nov. (Nematoda, Cucullanidae) infecting the European eel Anguilla anguilla in Egypt. Morphological and molecular phylogenetic studies. Parasitol Res 113(9):3457–3465

    Article  PubMed  Google Scholar 

  • Abdel-Ghaffar F, Abdel-Gaber R, Bashtar AR, Morsy K, Mehlhorn H, Al Quraishy S, Saleh R (2015) Hysterothylacium aduncum (Nematoda, Anisakidae) with a new host record from the common sole Solea solea (Soleidae) and its role as a biological indicator of pollution. Parasitol Res 14:513–522

  • Abdou NE (2005) Studies on the anisakid nematode juveniles infecting some Red Sea fishes in Egypt. J Zool Invert Parasitol 47:147–160

    Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates: their development and transmission. CAB, Wallingford

    Book  Google Scholar 

  • Arthur JR, Margolis L, Whitaker DJ, McDonald TF (1982) A quantitative study of economically important parasites of walleye pollock (Theragra chalcogramma) from British Columbian waters and effects of postmortem handling on their abundance in the musculature. J Fish Red Board Can 39:710–726

    Article  Google Scholar 

  • Audicana MT, Kennedy MW (2008) Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 21(2):360–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Audicana M, Fernández de Corres L, Muñoz D, Fernández E, Navarro JA, Del Pozo MD (1995) Recurrent anaphylaxis due to Anisakis simplex parasitizing sea-fish. J Allergy Clin Immunol 96:558–560

    Article  CAS  PubMed  Google Scholar 

  • Audicana MT, Ansotegui IJ, de Corres LF, Kennedy MW (2002) Anisakis simplex: dangerous–dead and alive? Trends Parasitol 18:20–25

    Article  PubMed  Google Scholar 

  • Baeza ML, Conejero L, Higaki Y, Martín E, Pérez C, Infante S, Rubio M, Zubeldia JM (2005) Anisakis simplex allergy: a murine model of anaphylaxis induced by parasitic proteins displays a mixed Th1/Th2 pattern. Clin Exp Immunol 142(3):433–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bouree P, Paugam A, Petithory JC (1995) Anisakidosis: report of 25 cases and review of the literature. Comp Immunol Microbiol Infect Dis 18:75–84

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bush AO, Aho JM, Kennedy C (1990) Ecological versus phylogenetic determinants of helminth parasite community richness. Evol Ecol 4:1–20

    Article  Google Scholar 

  • Caballero ML, Moneo I (2004) Several allergens from Anisakis simplex are highly resistant to heat and pepsin treatments. Parasitol Res 93:248–251

    PubMed  Google Scholar 

  • Chai J, Murrell KD, Lymbery AJ (2005) Fish-borne parasitic zoonoses: status and issues. Int J Parasitol 35:1233–1254

    Article  PubMed  Google Scholar 

  • Chen Q, Yu HQ, Lun ZR, Chen XG, Song HQ, Lin RQ, Zhu XQ (2008) Specific PCR assays for the identification of common anisakid nematodes with zoonotic potential. Parasitol Res 104:79–84

    Article  CAS  PubMed  Google Scholar 

  • Cho TH, Park HY, Cho S, Sohn J, Yoon YW, Cho JE, Cho SW (2006) The time-course of biological and immunochemical allergy states induced by Anisakis simplex larvae in rats. Clin Exp Immunol 143:203–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costa G, Pontes T, Mattiucci S, Amelio SD (2003) The occurrence and infection dynamics of Anisakis larvae in the black-scabbard fish, Aphanopus carbo, chub mackerel, Scomber japonicas, and Oceanic horse mackerel, Trachurus picturatus from Adeira, Portugal. J Helminthol 77:163–166

    Article  CAS  PubMed  Google Scholar 

  • Cruz CA, Saraiva VA (2005) Larval anisakids from horse mackerel in Portugal. Helminthologia 42(1):3–7

    Google Scholar 

  • Dick TA, Choudhury A (1995) Phylum Nematoda. In: Woo PTK (ed) Fish diseases and disorders, volume I protozoan and metazoan infection. Cambridge University Press, Cambridge, pp 415–446

    Google Scholar 

  • Dorny P, Praet N, Deckers N, Gabriel S (2009) Emerging food-borne parasites. Vet Parasitol 163:196–206

    Article  CAS  PubMed  Google Scholar 

  • Else KJ, Finkelman FD, Maliszewski CR, Grencis RK (1994) Cytokine mediated regulation of chronic intestinal helminth infection. J Exp Med 179:347–351

    Article  CAS  PubMed  Google Scholar 

  • Flesch IE, Kaufmann SH (1990) Activation of tuberculostatic macrophage functions by γ-interferon, interleukin-4, and tumor necrosis factor. Infect Immun 58:2675–2677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flohr C, Quinnell RJ, Britton J (2009) Do helminth parasites protect against atopy 408 and allergic disease? Clin Exp Allergy 39:20–32

    Article  CAS  PubMed  Google Scholar 

  • Grencis RK (1996) T cell and cytokine basis of host variability in response to intestinal nematode infections. Parasitology 112:S31–S37

    PubMed  Google Scholar 

  • Inoue K, Oshima SI, Hirata T, Kimura I (2000) Possibility of anisakid larvae infection in farmed salmon. Fish Sci 66:1049–1052

    Article  CAS  Google Scholar 

  • Kennedy MW, Tierney J, Ye P, McMongle FA, McIntosh A, McLaughlin D, Smith JW (1988) The secreted and stomach antigens of the third stage larvae of Anisakis simplex, and antigenic relationship with Ascaris suum, Ascaris lumbricoides, and Toxocara canis. Mol Biochem Parasit 31:35–46

  • Kinoshita Y, Fujimoto K, Lee M, Shinohara R, Kobayashi Y, Kawana S, Saeki H (2014) Two cases of allergies due to Anisakis simplex, positive to specific IgE for ani S 12 allergen. Arerugi 63(10):1348–1352

    PubMed  Google Scholar 

  • Kirstein F, Horsnell WG, Kuperman DA, Huang X, Erle DJ, Lopata AL (2010) Expression of IL-4 receptor alpha on smooth muscle cells is not necessary for development of experimental allergic asthma. J Allergy Clin Immunol 126:347–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klimpel S, Abdel-Ghaffar F, Al-Rasheid KA, Aksu G, Fischer K, Strassen B, Mehlhorn H (2011) The effects of different plant extracts on nematodes. Parasitol Res 108(4):1047–1054

    Article  PubMed  Google Scholar 

  • Køie M (2001) Experimental infections of copepods and sticklebacks Gasterosteus aculeatus with small ensheathed and large third stage larvae of Anisakis simplex (Nematoda: Anisakidae). Parasitol Res 87:32–36

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Al-Quraishy S, Al-Rasheid KA, Jatzlau A, Abdel-Ghaffar F (2011) Addition of a combination of onion (Allium cepa) and coconut (Cocos nucifera) to food of sheep stops gastrointestinal helminthic infections. Parasitol Res 108(4):1041–1046

    Article  PubMed  Google Scholar 

  • Min B (2008) Basophils: what they “can do” versus what they “actually do”. Nat Immunol 9(12):1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Misko TP, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Moravec F (1994) Parasitic nematodes of freshwater fishes of Europe. Academia and Kluwer Academic Publishers, Prague, p 473

    Google Scholar 

  • Morsy K, Bashtar AR, Abdel-Ghaffar F, Mehlhorn H, Quraishy SA, Mahdi ME, Al-Ghamdi A, Mostafa N (2012) First record of anisakid juveniles (Nematoda) in the European seabass Dicentrarchus labrax (Family: Moronidae), and their role as bioindicators of heavy metal pollution. Parasitol Res 110(3):1131–1138

    Article  PubMed  Google Scholar 

  • Morsy K, Bashtar AR, Abdel-Ghaffar F, Mostafa N (2013) New host and locality records of two nematode parasites Dujardinnascaris mujibii (Heterocheilidae) and Hysterothylacium aduncum (Anisakidae) from the common seabream Pagrus pagrus: a light and scanning electron microscopic study. Parasitol Res 112(2):807–815

    Article  PubMed  Google Scholar 

  • Morsy K, Bashtar AR, Mostafa N, El Deeb S, Thabet S (2015) New host records of three juvenile nematodes in Egypt: Anisakis sp. (Type II), Hysterothylacium patagonense (Anisakidae), and Echinocephalus overstreeti (Gnathostomatidae) from the greater lizard fish Saurida undosquamis of the Red Sea. Parasitol Res 114(2):513–522

    Article  PubMed  Google Scholar 

  • Mukai K, Matsuoka K, Taya C, Suzuki H, Yokozeki H, Nishioka K, Hirokawa K, Etori M, Yamashita M, Kubota T, Minegishi Y, Yonekawa H, Karasuyama H (2005) Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunology 23(2):191–202

    CAS  Google Scholar 

  • Noguera P, Collins C, Bruno D, Pert C, Turnbull A, McIntosh A, Lester K, Bricknell I, Wallace S, Cook P (2009) Red vent syndrome in wild Atlantic salmon Salmo salar in Scotland is associated with Anisakis simplex sensu stricto (Nematoda: Anisakidae). Dis Aquat Org 87:199–215

    Article  CAS  PubMed  Google Scholar 

  • Pavanelli WR, Silva JJN (2010) The role of nitric oxide in immune response against Trypanosoma cruzi infection. Open Nitric Oxide J 2:1–6

    Article  CAS  Google Scholar 

  • Petithory JC, Marti B (1988) L’anisakiase en France. Lett l’Infectiologue 2:96

    Google Scholar 

  • Platt NE (1975) Infestation of cod (Codus morhua L) with larvae of cod worm (Terranova decipiens Krabbe) and herring worm, Anisakis sp. (Nematoda: Ascaridata) in the north Atlantic. J Appl Ecol 12:437–450

    Article  Google Scholar 

  • Podolska M, Horbowy J (2003) Infection of the Baltic herring (Clupea harengus membras) with Anisakis simplex larvae, 1992–1999: a statistical analysis using generalized linear models. J Mar Sci 60:85–93

    Google Scholar 

  • Post G (1987) Animal parasites of fishes: textbook of fish health. T.F.H. Publications, Inc. USA, pp. 159–214

  • Randall DA, Shao Q, Moeng CH (1992) A second order bulk boundary-layer model. J Atmos Sci 49:1903–1923

    Article  Google Scholar 

  • Rocka A (2004) Nematodes of the Antarctic fishes. Pol Polar Res 25(2):135–152

    Google Scholar 

  • Shih HH, Jeng MS (2002) H. aduncum (Nematoda: Anisakidae) infecting a herbivorous fish, Siganus fuscescens, off the Taiwanese Coast of the Northwest Pacific. Zool Stud 41(2):208–215

    Google Scholar 

  • Shih HH, Ku CC, Wang CS (2010) Anisakis simplex (Nematoda: Anisakidae) third-stage larval infections of marine cage cultured cobia, Rachycentron canadum L., in Taiwan. Vet Parasitol 171:277–285

    Article  PubMed  Google Scholar 

  • Shimoda K, van Deursen J, Sangster MY (1996) Lack of IL- 4 induced Th2 responses and IgE class switching in mice with disrupted STAT 6 gene. Nature 380:630–633

    Article  CAS  PubMed  Google Scholar 

  • Smith JW (1984) The abundance of Anisakis simplex L3 in the body-cavity and flesh of marine teleosts. Int J Parasitol 14:491–495

    Article  Google Scholar 

  • Sugawara Y, Urawa S, Kaeriyama M (2004) Infection of Anisakis simplex (Nematoda: Anisakidae) larvae in chum salmon (Oncorhynchus keta) in the North Pacific Ocean, Bering Sea, and a river of Hokkaido. North Pacific Anadromous Fish Commission Doc 791. Hokkaido Tokai University, Sapporo

  • Takahashi S, Ishikura H, Kikuchi K (1998) Anisakidosis: global point of view. In: Ishikura H, Aikawa M, Itakura H, Kikuchi K (eds) Host response to international parasitic zoonoses. Springer, Tokyo, pp 109–120

    Chapter  Google Scholar 

  • Tsujimura Y, Obata K, Mukai K, Shindou H, Yoshida M, Nishikado H, Kawano Y, Minegishi Y, Shimizu T, Karasuyama H (2008) Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunology 28(4):581–589

    CAS  Google Scholar 

  • Urban JF Jr, Madden KB, Svetic A (1992) The importance of TH2 cytokines in protective immunity to nematodes. Immunol Rev 127:205–220

    Article  CAS  PubMed  Google Scholar 

  • Van Thiel PH (1962) Anisakiasis. Parasitology 52:16–17

    Google Scholar 

  • Williams HH, Jones A (1994) Parasitic worms of fish. Taylor & Francis, London

    Google Scholar 

  • Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89(6):873–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yazdanbakhsh M (1996) IgE, eosinophils and mast cells in helminth infections. Ned Tijdschr Klin Chem 21:213–216

    Google Scholar 

  • Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296:490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors extend appreciations to the Faculty of Science, Cairo University, Cairo, Egypt, and to the Deanship of Scientific Research at King Saud University for funding the work through the international research group project IRG14-23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathy Abdel-Ghaffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Ghaffar, F., Badr, A.M., Morsy, K. et al. Cytokine signature and antibody-mediated response against fresh and attenuated Anisakis simplex (L3) administration into Wistar rats: implication for anti-allergic reaction. Parasitol Res 114, 2975–2984 (2015). https://doi.org/10.1007/s00436-015-4500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4500-5

Keywords

Navigation