Skip to main content

Advertisement

Log in

A histological evaluation of development and axis formation in freshwater fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present investigation was carried out to underscore the developmental events of a crustacean ectoparasite of fish, Argulus bengalensis. Serial histological sections of the embryo were made at lateral, sagittal and longitudinal planes to explain its cleavage, gastrulation and axis specification. The centrolecithal egg of A. bengalensis underwent meroblastic superficial cleavage. The cleavage initiated at the future dorsal side of the egg within 5 h to 5 h and 30 min of incubation. Consequently, a small mass of energids appeared superficially at the future dorsal side within 6 h. Later, energids were found at the future ventral and lateral sides. A syncytial blastoderm was formed around the centrally placed yolk material which was transformed into a cellular blastoderm within 30 h of incubation. In the blastoderm, two cell masses were formed at the dorsal and ventral part which initially extended towards each other and later spread out though future anterior-posterior direction. The pressure exerted by the cell flow displaced the entire yolk material at the future postero-ventral side. At the time of egg laying, a prototype of the embryonic axes is determined. The substratum side of the egg formed the dorsal part, whilst the side facing water turned to the ventral part. The broader end of the egg formed the anterior side and the narrow end formed the posterior side of the embryo. The anterior-posterior axis formation was initiated within 72 to 96 h of incubation when the blastodermal cells displaced the yolk material at the future posterior end. Within 120 h of incubation, the germ layers of the embryo were determined. The study reveals that the cleavage pattern of A. bengalensis shows close similarities with that of the Malacostraca amongst the crustaceans and dipteran and hymenopteran amongst the insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alwes F, Scholtz G (2004) Cleavage and gastrulation of the euphausiacean Meganyctiphanes norvegica (Crustacea, Malacostraca). Zoomorphology 123:125–137

    Article  Google Scholar 

  • Alwes F, Scholtz G (2014) The early development of the onychopod cladoceran Bythotrephes longimanus (Crustacea, Branchiopoda). Front Zool 11:1–22

    Article  Google Scholar 

  • Alwes F, Hinchen B, Extavour CG (2011) Patterns of cell lineage, movement, and migration from germ layer specification to gastrulation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 359:110–123

    Article  CAS  PubMed  Google Scholar 

  • Anderson DT (1969) On the embryology of the cirripede crustaceans Tetraclita rosea (Krauss), Tetraclita purpurascens (Wood), Chthamalus antennatus (Darwin) and Chamaesipho columna (Spengler) and some considerations of crustacean phylogenetic relationships. Phil Trans Roy Soc Lond B 256:183–235

    Article  Google Scholar 

  • Anderson DT (1972a) The development of hemimetabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London and New York, pp 96–165

    Google Scholar 

  • Anderson DT (1972b) The development of holometabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London and New York, pp 166–242

    Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford

    Google Scholar 

  • Avenant-Oldewage A, Everts L (2010) Argulus japonicus: sperm transfer by means of a spermatophore on Carassius auratus (L). Exp Parasitol 126:232–238

    Article  PubMed  Google Scholar 

  • Avenant-Oldewage A, Swanepoel JH (1993) The male reproductive system and mechanism of sperm transfer in Argulus japonicus (Crustacea: Branchiura). J Morphol 215:51–63

    Article  Google Scholar 

  • Banerjee A, Saha SK (2013) Biphasic control of Argulus bengalensis Ramakrishna (1951) (Crustacea: Branchiura) with plant derivatives. Aquaculture 414–415:202–209

    Article  Google Scholar 

  • Banerjee A, Saha SK (2014) Tissue specific structural variations of mitochondria of fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura): functional implications. J Advanc Res 5:319–328

    Article  PubMed Central  Google Scholar 

  • Banerjee A, Manna S, Saha SK (2014a) Morphological characterization of testicular cells, spermatogenesis and formation of spermatophores in a fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura). Tissue Cell 46:59–69

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Manna S, Saha SK (2014b) Effect of aqueous extract of Azadirachta indica A. Juss (neem) leaf on oocyte maturation, oviposition, reproductive potentials and embryonic development of a freshwater fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura). Parasitol Res 113:4641–4650

    Article  PubMed  Google Scholar 

  • Biffis C, Alwes F, Scholtz G (2009) Cleavage and gastrulation of the dendrobranchiate shrimp Penaeus monodon (Crustacea, Malacostraca, Decapoda). Arthropod Struct Dev 38:527–540

    Article  PubMed  Google Scholar 

  • Browne WE, Price AL, Gerberding M, Patel NH (2005) Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42:124–149

    Article  PubMed  Google Scholar 

  • Buchta T, Özüak O, Stappert D, Roth S, Lynch JA (2013) Patterning the dorsal–ventral axis of the wasp Nasonia vitripennis. Dev Biol 381:189–202

    Article  CAS  PubMed  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin, p 405

    Book  Google Scholar 

  • Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name ‘Tetraconata’ for the monophyletic unit Crustacea + Hexapoda. Ann Soc Entomol Fr 37:85–103

    Google Scholar 

  • Dohle W, Scholtz G (1997) How far does cell lineage influence cell fate specification in crustacean embryos? Semin Cell Dev Biol 8:379–390

    Article  CAS  PubMed  Google Scholar 

  • Dohle W, Gerberding M, Hejnol A, Scholtz G (2004) Cell lineage, segment differentiation, and gene expression in crustaceans. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean Issues 15.A.A. Balkema, Lisse, pp 95–133

    Google Scholar 

  • Extavour CG (2005) The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 277:387–402

    Article  CAS  PubMed  Google Scholar 

  • Fenton A, Hakalahti T, Bandilla M, Valtonen ET (2006) The impact of variable hatching rates on parasite control: a model of an aquatic ectoparasite in a Finnish fish farm. J Appl Ecol 43:660–668

    Article  Google Scholar 

  • Gault NFS, Kilpatrick DJ, Stewart MT (2002) Biological control of the fish louse in a rainbow trout fishery. J Fish Biol 60:226–237

    Article  Google Scholar 

  • Grbić M, Strand MR (1998) Shifts in the life history of parasitic wasps correlate with pronounced alterations in early development. Proc Natl Acad Sci U S A 95:1097–1101

    Article  PubMed Central  PubMed  Google Scholar 

  • Guha A, Aditya G, Saha SK (2013) Survivorship and fecundity of Argulus bengalensis (Crustacea; Branchiura) under laboratory conditions. Invertebr Reprod Dev 57:301–308

    Article  Google Scholar 

  • Hakalahti T, Valtonen ET (2003) Population structure and recruitment of the ectoparasite Argulus coregoni Thorell (Crustacea: Branchiura) on a fish farm. Parasitology 127:79–85

    Article  CAS  PubMed  Google Scholar 

  • Hakalahti T, Pasternak AF, Valtonen ET (2004) Seasonal dynamics of egg laying and egg-laying strategy of the ectoparasite Argulus coregoni (Crustacea: Branchiura). Parasitology 128:655–660

    Article  CAS  PubMed  Google Scholar 

  • Harrison AJ, Gault NFS, Dick JTA (2006) Seasonal and vertical patterns of egglaying by the freshwater fish louse Argulus foliaceus (Crustacea: Branchiura). Dis Aquat Org 68:167–173

    Article  CAS  PubMed  Google Scholar 

  • Hertzler PL (2005) Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus) vannamei (Malacostraca, Decapoda, Dendrobranchiata). Arthropod Struct Dev 34:455–469

    Article  Google Scholar 

  • Høeg JT, Lagersson NC, Glenner H (2004) The complete cypris larva and its significance in the costracan phylogeny. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean Issues 15.A.A. Balkema, Lisse, pp 197–215

    Google Scholar 

  • Ikuta K, Makioka T (1997) Structure of the adult ovary and oogenesis in Argulus japonicus Thiele (Crustacea: Branchiura). J Morphol 231:29–39

    Article  Google Scholar 

  • Ikuta K, Makioka T, Amikura R (1997) Eggshell ultrastructure in Argulus japonicas (Branchiura). J Crust Biol 17:45–51

    Article  Google Scholar 

  • Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev 39:436–445

    Article  PubMed  Google Scholar 

  • Kotov AA, Boikova OS (1998) Comparative analysis of the late embryogenesis of Sida crystallina (O.F. Müller, 1776) and Diaphanosoma brachyurum (Lievin, 1848) (Crustacea: Brachiopoda: Ctenopoda). Hydrobiologia 380:103–125

    Article  Google Scholar 

  • Mikheev VN, Pasternak AF, Valtonen ET, Lankinen Y (2001) Spatial distribution and hatching of overwintered eggs of a fish ectoparasite, Argulus coregoni (Crustacea: Branchiura). Dis Aquat Org 46:123–128

    Article  CAS  PubMed  Google Scholar 

  • Møller OS, Olesen J (2014) Branchiura. In: Martin JW, Olesen J, Høeg JT (eds) Atlas of crustacean larvae. Johns Hopkins University Press, Baltimore, pp 128–134

    Google Scholar 

  • Møller OS, Olesen J, Avenant-Oldewage A, Thomsen PF, Glenner H (2008) First maxillae suction discs in Branchiura (Crustacea): development and evolution in light of the first molecular phylogeny of Branchiura, Pentastomida, and other “Maxillopoda”. Arthropod Struct Dev 37:333–346

    Article  PubMed  Google Scholar 

  • Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Olesen J (2007) Monophyly and phylogeny of the Branchiopoda (Crustacea), with focus on morphology and homologies of branchiopod phyllopodous limbs. J Crust Biol 27:165–183

    Article  Google Scholar 

  • Özhan-Kizil G, Havemann J, Gerberding M (2009) Germ cells in the crustacean Parhyale hawaiensis depend on Vasa protein for their maintenance but not for their formation. Dev Biol 327:230–239

    Article  PubMed  Google Scholar 

  • Pankratz MJ, Jäckle H (1993) Blastoderm segmentation. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Sping Harbor, pp 467–516

    Google Scholar 

  • Pasternak AF, Mikheev VN, Valtonen ET (2000) Life history characteristics of Argulus foliaceus L. (Crustacea: Branchiura) populations in Central Finland. Ann Zool Fenn 37:25–35

    Google Scholar 

  • Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BP (ed) Development and evolution. Cambridge University Press, Cambridge, pp 137–159

    Google Scholar 

  • Sarker M, Islam S, Uehara T (2009) Artificial insemination and early embryonic development of the mangrove crab Perisesarma bidens (De Haan) (Crustacea: Brachyura). Zool Stud 48:607–618

    Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G (2002) Phylogeny and evolution. In: Holdich D (ed) Biology of freshwater crayfish. Blackwell Science, Oxford, pp 30–52

    Google Scholar 

  • Scholtz G (2004) Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. Crustacean Issues 15.A.A. Balkema, Lisse, pp 3–16

    Google Scholar 

  • Scholtz G, Wolff C (2002) Cleavage pattern, gastrulation, and germ disc formation of the amphipod crustacean Orchestia cavimana. Contrib Zool 71:9–28

    Google Scholar 

  • Scholtz G, Wolff C (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin, pp 63–89

    Chapter  Google Scholar 

  • Shafir A, Oldewage WH (1992) Dynamics of a fish ectoparasite population: opportunistic parasitism in Argulus japonicus (Branchiura). Crustaceana 62:50–64

    Article  Google Scholar 

  • Shimura S (1983) Seasonal occurrence, sex ratio and site preference of Argulus coregoni Thorell (Crustacea: Branchiura) parasitic on cultured freshwater salmonids in Japan. Parasitology 86:537–552

    Article  Google Scholar 

  • Siewing R (1969) Lehrbuch der vergleichenden Entwicklungsgeschichte der Tiere. Parey, Hamburg

    Google Scholar 

  • St Johnston D, Nusslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–219

    Article  CAS  PubMed  Google Scholar 

  • Storch V, Jamieson BGM (1992) Further spermatological evidence for including the Pentastomida (Tongue worms) in the Crustacea. Int J Parasitol 22:95–108

    Article  Google Scholar 

  • Sundara Bai A, Seenappa D, Deveraj KV (1988) Oviposition and sex ratio of Argulus siamensis var. siamensis and Argulus siamensis var. Hessarghattaris (Crustacea: Branchiura) parasitic on freshwater fishes. Curr Sci 57:685–686

    Google Scholar 

  • Taylor NGH, Wootten R, Sommerville C (2009a) Using length–frequency data to elucidate the population dynamics of Argulus foliaceus (Crustacea: Branchiura). Parasitology 136:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Taylor NGH, Wootten R, Sommerville C (2009b) The influence of risk factors on the abundance, egg laying habits and impact of Argulus foliaceus in Stillwater trout fisheries. J Fish Dis 32:509–519

    Article  CAS  PubMed  Google Scholar 

  • von Reumont BM, Meusemann K, Szucsich NU, Dell'Ampio E, Gowri-Shankar V, Bartel D, Simon S, Letsch HO, Stocsits RR, Luan Y, Wägele JW, Pass G, Hadrys H, Misof B (2009) Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships. BMC Evol Biol 9:1–19

    Article  Google Scholar 

  • Walossek D (1993) The upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils Strata 32:1–202

    Google Scholar 

  • Wang SW, Hertzler PL, Clark WH Jr (2008) Mesendoderm cells induce oriented cell division and invagination in the marine shrimp Sicyonia ingentis. Dev Biol 320:175–184

    Article  CAS  PubMed  Google Scholar 

  • Weygoldt BP (1986) Arthropod interrelationships–the phylogenetic‐systematic approach. J Zoolog Syst Evol Res 24:19–35

    Article  Google Scholar 

  • Wingstrand KG (1972) Comparative spermatology of a pentastomid, Raillietiella hemidactyli, and a branchiuran crustacean, Argulus foliaceus, with a discussion of pentastomid relationships. Biol Skr Dan Vid Sel 19:l–72

    Google Scholar 

  • Wolff C (2009) The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219:545–564

    Article  PubMed  Google Scholar 

  • Wolff C, Scholtz G (2002) Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana. Dev Biol 250:44–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We have pleasure to acknowledge University Science Instrumentation Centre (USIC), The University of Burdwan, West Bengal, India for providing facility for electron microscopy.

This work was supported by the University Grants Commission, Government of India through a Major Research Project F.33-333/2007(SR).

Conflict of interest

The authors have no conflict of ethical interest, and our submission complies with the ethical standards of the journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Kumar Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Manna, S. & Saha, S.K. A histological evaluation of development and axis formation in freshwater fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura). Parasitol Res 114, 2199–2212 (2015). https://doi.org/10.1007/s00436-015-4411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4411-5

Keywords