Skip to main content

Advertisement

Log in

Depletion of regulatory T cells decreases cardiac parasitosis and inflammation in experimental Chagas disease

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Infection with the protozoan parasite Trypanosoma cruzi may lead to a potentially fatal cardiomyopathy known as Chagas heart disease. This disease is characterized by infiltration of the myocardium by mononuclear cells, including CD4+ T cells, together with edema, myofibrillary destruction, and fibrosis. A multifaceted systemic immune response develops that ultimately keeps parasitemia and tissue parasitosis low. T helper 1 and other pro-inflammatory T cell responses are effective at keeping levels of T. cruzi low in tissues and blood, but they may also lead to tissue inflammation when present chronically. The mechanism by which the inflammatory response is regulated in T. cruzi-infected individuals is complex, and the specific roles that Th17 and T regulatory (Treg) cells may play in that regulation are beginning to be elucidated. In this study, we found that depletion of Treg cells in T. cruzi-infected mice leads to reduced cardiac parasitosis and inflammation, accompanied by an augmented Th1 response early in the course of infection. This is followed by a downregulation of the Th1 response and increased Th17 response late in infection. The effect of Treg cell depletion on the Th1 and Th17 cells is not observed in mice immunized with T. cruzi in adjuvant. This suggests that Treg cells specifically regulate Th1 and Th17 cell responses during T. cruzi infection and may also be important for modulating parasite clearance and inflammation in the myocardium of T. cruzi-infected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo FF, Gomes JA, Rocha MO, Williams-Blangero S, Pinheiro VM, Morato MJ, Correa-Oliveira R (2007) Potential role of CD4 + CD25HIGH regulatory T cells in morbidity in Chagas disease. Front Biosci 12:2797–2806

    Article  PubMed  CAS  Google Scholar 

  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4 + CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    Article  PubMed  CAS  Google Scholar 

  • Bonney KM, Engman DM (2008) Chagas heart disease pathogenesis: one mechanism or many? Curr Mol Med 8:510–518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bonney KM, Taylor JM, Daniels MD, Epting CL, Engman DM (2011) Heat-killed Trypanosoma cruzi induces acute cardiac damage and polyantigenic autoimmunity. PLoS One 6:e14571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bonney KM, Gifford KM, Taylor JM, Chen CI, Engman DM (2013) Cardiac damage induced by immunization with heat-killed Trypanosoma cruzi is not antibody mediated. Parasite Immunol 35:1–10

    Article  PubMed  CAS  Google Scholar 

  • Cobb D, Smeltz RB (2012) Regulation of proinflammatory Th17 responses during Trypanosoma cruzi infection by IL-12 family cytokines. J Immunol

  • Cooke A (2006) Th17 cells in inflammatory conditions. Rev Diabet Stud 3:72–75

    Article  PubMed Central  PubMed  Google Scholar 

  • Couper KN, Blount DG, de Souza JB, Suffia I, Belkaid Y, Riley EM (2007) Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice. J Immunol 178:4136–4146

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cummings KL, Tarleton RL (2003) Rapid quantitation of Trypanosoma cruzi in host tissue by real-time PCR. Mol Biochem Parasitol 129:53–59

    Article  PubMed  CAS  Google Scholar 

  • Da Matta Guedes PM, Gutierrez FR, Maia FL, Milanezi CM, Silva GK, Pavanelli WR, Silva JS (2010) IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite-induced myocarditis. PLoS Negl Trop Dis 4:e604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Daniels MD, Hyland KV, Wang K, Engman DM (2008) Recombinant cardiac myosin fragment induces experimental autoimmune myocarditis via activation of Th1 and Th17 immunity. Autoimmunity 41:490–499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dardalhon V, Korn T, Kuchroo VK, Anderson AC (2008) Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31:252–256

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davila DF, Rossell RO, Donis JH (1989) Cardiac parasympathetic abnormalities: cause or consequence of Chagas heart disease. Parasitol Today 5:327–329

    Article  PubMed  CAS  Google Scholar 

  • de Araujo FF, Vitelli-Avelar DM, Teixeira-Carvalho A, Antas PR, Assis Silva Gomes J, Sathler-Avelar R, Otavio Costa Rocha M, Eloi-Santos SM, Pinho RT, Correa-Oliveira R, Martins-Filho OA (2011) Regulatory T cells phenotype in different clinical forms of Chagas’ disease. PLoS Negl Trop Dis 5:e992

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Araujo FF, Correa-Oliveira R, Rocha MO, Chaves AT, Fiuza JA, Fares RC, Ferreira KS, Nunes MC, Keesen TS, Damasio MP, Teixeira-Carvalho A, Gomes JA (2012) Foxp3 + CD25(high) CD4+ regulatory T cells from indeterminate patients with Chagas disease can suppress the effector cells and cytokines and reveal altered correlations with disease severity. Immunobiology 217:768–777

    Article  PubMed  CAS  Google Scholar 

  • Flores-Garcia Y, Rosales-Encina JL, Rosales-Garcia VH, Satoskar AR, Talamas-Rohana P (2013) CD4+ CD25+ FOXP3+ Treg cells induced by rSSP4 derived from T. cruzi amastigotes increase parasitemia in an experimental Chagas disease model. Biomed Res Int 2013:632436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22:329–341

    Article  PubMed  CAS  Google Scholar 

  • Giordanengo L, Fretes R, Diaz H, Cano R, Bacile A, Vottero-Cima E, Gea S (2000) Cruzipain induces autoimmune response against skeletal muscle and tissue damage in mice. Muscle Nerve 23:1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Girones N, Carrasco-Marin E, Cuervo H, Guerrero NA, Sanoja C, John S, Flores-Herraez R, Fernandez-Prieto L, Chico-Calero I, Salgado H, Carrion J, Fresno M (2007) Role of Trypanosoma cruzi autoreactive T cells in the generation of cardiac pathology. Ann N Y Acad Sci 1107:434–444

    Article  PubMed  CAS  Google Scholar 

  • Godsel LM, Leon JS, Wang K, Fornek JL, Molteni A, Engman DM (2003) Captopril prevents experimental autoimmune myocarditis. J Immunol 171:346–352

    Article  PubMed  CAS  Google Scholar 

  • Gomes JA, Bahia-Oliveira LM, Rocha MO, Martins-Filho OA, Gazzinelli G, Correa-Oliveira R (2003) Evidence that development of severe cardiomyopathy in human Chagas’ disease is due to a Th1-specific immune response. Infect Immun 71:1185–1193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guedes PM, Gutierrez FR, Silva GK, Dellalibera-Joviliano R, Rodrigues GJ, Bendhack LM, Rassi A Jr, Rassi A, Schmidt A, Maciel BC, Marin Neto JA, Silva JS (2012) Deficient regulatory T cell activity and low frequency of IL-17-producing T cells correlate with the extent of cardiomyopathy in human Chagas’ disease. PLoS Negl Trop Dis 6:e1630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoft DF, Schnapp AR, Eickhoff CS, Roodman ST (2000) Involvement of CD4(+) Th1 cells in systemic immunity protective against primary and secondary challenges with Trypanosoma cruzi. Infect Immun 68:197–204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Chan J, Wittner M, Jelicks LA, Morris SA, Factor SM, Weiss LM, Braunstein VL, Bacchi CJ, Yarlett N, Chandra M, Shirani J, Tanowitz HB (1999) Expression of cardiac cytokines and inducible form of nitric oxide synthase (NOS2) in Trypanosoma cruzi-infected mice. J Mol Cell Cardiol 31:75–88

    Article  PubMed  CAS  Google Scholar 

  • Hunter CA, Ellis-Neyes LA, Slifer T, Kanaly S, Grunig G, Fort M, Rennick D, Araujo FG (1997) IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi. J Immunol 158:3311–3316

    PubMed  CAS  Google Scholar 

  • Hyland KV, Leon JS, Daniels MD, Giafis N, Woods LM, Bahk TJ, Wang K, Engman DM (2007) Modulation of autoimmunity by treatment of an infectious disease. Infect Immun 75:3641–3650

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jacysyn JF, Abrahamsohn IA, Macedo MS (2003) IL-4 from Th2-type cells suppresses induction of delayed-type hypersensitivity elicited shortly after immunization. Immunol Cell Biol 81:424–430

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff LV, Weiss LM, Wittner M, Tanowitz HB (2004) Parasitic diseases of the heart. Front Biosci 9:706–723

    Article  PubMed  Google Scholar 

  • Kohm AP, McMahon JS, Podojil JR, Begolka WS, DeGutes M, Kasprowicz DJ, Ziegler SF, Miller SD (2006) Cutting edge: Anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol 176:3301–3305

    Article  PubMed  CAS  Google Scholar 

  • Kotner J, Tarleton R (2007) Endogenous CD4(+) CD25(+) regulatory T cells have a limited role in the control of Trypanosoma cruzi infection in mice. Infect Immun 75:861–869

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kumar S, Tarleton RL (2001) Antigen-specific Th1 but not Th2 cells provide protection from lethal Trypanosoma cruzi infection in mice. J Immunol 166:4596–4603

    Article  PubMed  CAS  Google Scholar 

  • Laucella SA, Postan M, Martin D, Hubby Fralish B, Albareda MC, Alvarez MG, Lococo B, Barbieri G, Viotti RJ, Tarleton RL (2004) Frequency of interferon-gamma-producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J Infect Dis 189:909–918

  • Le Cabec V, Emorine LJ, Toesca I, Cougoule C, Maridonneau-Parini I (2005) The human macrophage mannose receptor is not a professional phagocytic receptor. J Leukoc Biol 77:934–943

    Article  PubMed  CAS  Google Scholar 

  • Leon JS, Wang K, Engman DM (2003) Myosin autoimmunity is not essential for cardiac inflammation in acute Chagas disease. J Immunol 171:4271–4277

    Article  PubMed  CAS  Google Scholar 

  • Leon JS, Daniels MD, Toriello KM, Wang K, Engman DM (2004) A cardiac myosin-specific autoimmune response is induced by immunization with Trypanosoma cruzi proteins. Infect Immun 72:3410–3417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579–591

    Article  PubMed  CAS  Google Scholar 

  • Machado FS, Souto JT, Rossi MA, Esper L, Tanowitz HB, Aliberti J, Silva JS (2008) Nitric oxide synthase-2 modulates chemokine production by Trypanosoma cruzi-infected cardiac myocytes. Microbes Infect 10:1558–1566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mariano FS, Gutierrez FR, Pavanelli WR, Milanezi CM, Cavassani KA, Moreira AP, Ferreira BR, Cunha FQ, Cardoso CR, Silva JS (2008) The involvement of CD4 + CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect 10:825–833

    Article  PubMed  CAS  Google Scholar 

  • Minoprio P (2001) Parasite polyclonal activators: new targets for vaccination approaches? Int J Parasitol 31:588–591

    Article  PubMed  CAS  Google Scholar 

  • Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z (2011) Human FoxP3(+) regulatory T cells in systemic autoimmune diseases. Autoimmun Rev 10:744–755

    Article  PubMed  CAS  Google Scholar 

  • Motran CC, Fretes RE, Cerban FM, Rivarola HW, Vottero de Cima E (2000) Immunization with the C-terminal region of Trypanosoma cruzi ribosomal P1 and P2 proteins induces long-term duration cross-reactive antibodies with heart functional and structural alterations in young and aged mice. Clin Immunol 97:89–94

    Article  PubMed  CAS  Google Scholar 

  • Nihei J, Cardillo F, Dos Santos WL, Pontes-de-Carvalho L, Mengel J (2014) Administration of a nondepleting anti-CD25 monoclonal antibody reduces disease severity in mice infected with Trypanosoma cruzi. Eur J Microbiol Immunol 4:128–137

    Article  CAS  Google Scholar 

  • Parada H, Carrasco HA, Anez N, Fuenmayor C, Inglessis I (1997) Cardiac involvement is a constant finding in acute Chagas’ disease: a clinical, parasitological and histopathological study. Int J Cardiol 60:49–54

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo CA, Shevach EM (2004) Naturally-occurring CD4 + CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Sem Immunol 16:81–88

    Article  CAS  Google Scholar 

  • Piccirillo CA, d’Hennezel E, Sgouroudis E, Yurchenko E (2008) CD4 + Foxp3+ regulatory T cells in the control of autoimmunity: in vivo veritas. Curr Opin Immunol 20:655–662

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro dos Santos R, Rossi MA, Laus JL, Silva JS, Silvino W, Mengels J (1992) Anti-CD4 abrogates rejection and reestablishes long-term tolerance to syngeneic newborn hearts grafted in mice chronically infected with Trypanosoma cruzi. J Exp Med 175:29–39

    Article  CAS  Google Scholar 

  • Rizzo LV, Cunha-Neto E, Teixeira AR (1989) Autoimmunity in Chagas’ disease: specific inhibition of reactivity of CD4+ T cells against myosin in mice chronically infected with Trypanosoma cruzi. Infect Immun 57:2640–2644

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rocha Rodrigues DB, dos Reis MA, Romano A, Pereira SA, Teixeira Vde P, Tostes S Jr, Rodrigues V Jr (2012) In situ expression of regulatory cytokines by heart inflammatory cells in Chagas’ disease patients with heart failure. Clin Dev Immunol 2012:361730

    PubMed  Google Scholar 

  • Rodrigues MM, Ribeirao M, Boscardin SB (2000) CD4 Th1 but not Th2 clones efficiently activate macrophages to eliminate Trypanosoma cruzi through a nitric oxide dependent mechanism. Immunol Lett 73:43–50

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Salas LA, Klein E, Acquatella H, Catalioti F, Davalos VV, Gomez-Mancebo JR, Gonzalez H, Bosch F, Puigbo JJ (1998) Echocardiographic and clinical predictors of mortality in chronic Chagas’ disease. Echocardiography 15:271–278

    Article  PubMed  Google Scholar 

  • Rossi MA (1990) Microvascular changes as a cause of chronic cardiomyopathy in Chagas’ disease. Am Heart J 120:233–236

    Article  PubMed  CAS  Google Scholar 

  • Sales PA Jr, Golgher D, Oliveira RV, Vieira V, Arantes RM, Lannes-Vieira J, Gazzinelli RT (2008) The regulatory CD4 + CD25+ T cells have a limited role on pathogenesis of infection with Trypanosoma cruzi. Microbes Infect 10:680–688

    Article  PubMed  CAS  Google Scholar 

  • Santos-Buch CA, Teixeira AR (1974) The immunology of experimental Chagas’ disease. III. Rejection of allogeneic heart cells in vitro. J Exp Med 140:38–53

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sathler-Avelar R, Vitelli-Avelar DM, Teixeira-Carvalho A, Martins-Filho OA (2009) Innate immunity and regulatory T-cells in human Chagas disease: what must be understood? Mem Inst Oswaldo Cruz 104(Suppl 1):246–251

    Article  PubMed  CAS  Google Scholar 

  • Schnapp AR, Eickhoff CS, Sizemore D, Curtiss R 3rd, Hoft DF (2002) Cruzipain induces both mucosal and systemic protection against Trypanosoma cruzi in mice. Infect Immun 70:5065–5074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shevach EM, Suri-Payer E (1998) CD4 + CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Exp Med 188:287–296

    Article  PubMed Central  PubMed  Google Scholar 

  • Shevach EM, Piccirillo CA, Thornton AM, McHugh RS (2003) Control of T cell activation by CD4 + CD25+ suppressor T cells. Novartis Found Symp 252:24–36, 36–44, 106–114

  • Soares MB, Silva-Mota KN, Lima RS, Bellintani MC, Pontes-de-Carvalho L, Ribeiro-dos-Santos R (2001) Modulation of chagasic cardiomyopathy by interleukin-4: dissociation between inflammation and tissue parasitism. Am J Pathol 159:703–709

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soares RP, Torrecilhas AC, Assis RR, Rocha MN, Moura e Castro FA, Freitas GF, Murta SM, Santos SL, Marques AF, Almeida IC, Romanha AJ (2012) Intraspecies variation in Trypanosoma cruzi GPI-mucins: biological activities and differential expression of alpha-galactosyl residues. Am J Trop Med Hyg 87:87–96

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Speert DP, Silverstein SC (1985) Phagocytosis of unopsonized zymosan by human monocyte-derived macrophages: maturation and inhibition by mannan. J Leukoc Biol 38:655–658

    PubMed  CAS  Google Scholar 

  • Sterin-Borda L, Giordanengo L, Joensen L, Gea S (2003) Cruzipain induces autoantibodies against cardiac muscarinic acetylcholine receptors. Functional and pathological implications. Eur J Immunol 33:2459–2468

    Article  PubMed  CAS  Google Scholar 

  • Tanowitz HB, Machado FS, Jelicks LA, Shirani J, de Carvalho AC, Spray DC, Factor SM, Kirchhoff LV, Weiss LM (2009) Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis 51:524–539

    Article  PubMed Central  PubMed  Google Scholar 

  • Tarleton RL, Sun J, Zhang L, Postan M (1994) Depletion of T-cell subpopulations results in exacerbation of myocarditis and parasitism in experimental Chagas’ disease. Infect Immun 62:1820–1829

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tarleton RL, Grusby MJ, Postan M, Glimcher LH (1996) Trypanosoma cruzi infection in MHC-deficient mice: further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease. Int Immunol 8:13–22

    Article  PubMed  CAS  Google Scholar 

  • Tarleton RL, Zhang L, Downs MO (1997) “Autoimmune rejection” of neonatal heart transplants in experimental Chagas disease is a parasite-specific response to infected host tissue. Proc Natl Acad Sci U S A 94:3932–3937

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Teixeira ARL, Teixeira G, Macedo V, Prata A (1978) Trypanosoma cruzi sensitized T-lymphocyte mediated 51Cr release from human heart cells in Chagas’ disease. Am J Trop Med Hyg 27:1097–1107

    PubMed  CAS  Google Scholar 

  • Teixeira AR, Hecht MM, Guimaro MC, Sousa AO, Nitz N (2011) Pathogenesis of Chagas’ disease: parasite persistence and autoimmunity. Clin Microbiol Rev 24:592–630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tosello Boari J, Amezcua Vesely MC, Bermejo DA, Ramello MC, Montes CL, Cejas H, Gruppi A, Acosta Rodriguez EV (2012) IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog 8:e1002658

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tzelepis F, Persechini PM, Rodrigues MM (2007) Modulation of CD4(+) T cell-dependent specific cytotoxic CD8(+) T cells differentiation and proliferation by the timing of increase in the pathogen load. PLoS One 2:e393

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Valaperti A, Marty RR, Kania G, Germano D, Mauermann N, Dirnhofer S, Leimenstoll B, Blyszczuk P, Dong C, Mueller C, Hunziker L, Eriksson U (2008) CD11b + monocytes abrogate Th17 CD4+ T cell-mediated experimental autoimmune myocarditis. J Immunol 180:2686–2695

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos JF, Souza BS, Lins TF, Garcia LM, Kaneto CM, Sampaio GP, de Alcantara AC, Meira CS, Macambira SG, Ribeiro-dos-Santos R, Soares MB (2013) Administration of granulocyte colony-stimulating factor induces immunomodulation, recruitment of T regulatory cells, reduction of myocarditis and decrease of parasite load in a mouse model of chronic Chagas disease cardiomyopathy. FASEB J Off Publ Fed Am Soc Exp Biol 27:4691–4702

    CAS  Google Scholar 

  • Vitelli-Avelar DM, Sathler-Avelar R, Dias JC, Pascoal VP, Teixeira-Carvalho A, Lage PS, Eloi-Santos SM, Correa-Oliveira R, Martins-Filho OA (2005) Chagasic patients with indeterminate clinical form of the disease have high frequencies of circulating CD3 + CD16-CD56+ natural killer T cells and CD4 + CD25high regulatory T lymphocytes. Scand J Immunol 62:297–308

    Article  PubMed  CAS  Google Scholar 

  • Vitelli-Avelar DM, Sathler-Avelar R, Massara RL, Borges JD, Lage PS, Lana M, Teixeira-Carvalho A, Dias JC, Eloi-Santos SM, Martins-Filho OA (2006) Are increased frequency of macrophage-like and natural killer (NK) cells, together with high levels of NKT and CD4 + CD25high T cells balancing activated CD8+ T cells, the key to control Chagas’ disease morbidity? Clin Exp Immunol 145:81–92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344

    Article  CAS  Google Scholar 

  • Xu L, Kitani A, Fuss I, Strober W (2007) Cutting edge: regulatory T cells induce CD4 + CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178:6725–6729

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Sakaguchi S (2006) Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 16:115–123

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Tarleton RL (1999) Parasite persistence correlates with disease severity and localization in chronic Chagas’ disease. J Infect Dis 180:480–486

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Wang QH, Feng H, Liu J, Meng HR, Cao YM (2009) CD4 + CD25 + Foxp3+ regulatory T cells prevent the development of Th1 immune response by inhibition of dendritic cell function during the early stage of Plasmodium yoelii infection in susceptible BALB/c mice. Folia Parasitol (Praha) 56:242–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Teresa Schuessler for helpful advice during this study. This work was supported by NIH grants HL075822 and HL80692 (to D.M.E.) and Predoctoral Fellowship 0810179Z from the American Heart Association (to K.M.B.).

Open access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Engman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonney, K.M., Taylor, J.M., Thorp, E.B. et al. Depletion of regulatory T cells decreases cardiac parasitosis and inflammation in experimental Chagas disease. Parasitol Res 114, 1167–1178 (2015). https://doi.org/10.1007/s00436-014-4300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4300-3

Keywords

Navigation