Skip to main content
Log in

Topsoil conditions correlate with the emergence rates of Culicoides chiopterus and Culicoides dewulfi (Diptera: Ceratopogonidae) from cowpats

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Culicoides chiopterus (Meigen), 1830 and Culicoides dewulfi Goetghebuer, 1936 (Diptera: Ceratopogonidae) are considered to develop exclusively in dung, but do not necessarily show an equal distribution and abundance on livestock farms in Northern Europe. Recent modelling studies identified soil parameters to explain these differences. The present study addressed the question whether topsoil conditions underneath cowpats correlate with the number of emerging C. chiopterus and C. dewulfi. We recorded the emergence of biting midges from 24 cowpats over a period of 4 weeks and analysed samples from the topsoil. In agreement with species distribution models based on remote data, our results detected the correlation of soil moisture, organic matter and soil texture with the number of emerging C. chiopterus and C. dewulfi. With increasing soil moisture, the number of emerging adults increased for both species and the amount of organic matter was positively correlated with the number of emerging C. chiopterus. In contrast, soil textures showed conflicting results, i.e. a positive and negative relationship with the same variables. According to our results, soil underneath dung can explain the number of emerging Culicoides species. The knowledge of these effects might improve the interpretation of large-scaled distribution models for dung-breeding biting midges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Campbell JA, Pelham-Clinton EC (1960) A taxonomic review of the British species of Culicoides Latreille (Diptera, Ceratopogonidæ). Proc R Soc Edinb Sect B Biol 67:181–302

    Article  Google Scholar 

  • Cannon LRG, Reye EJ (1966) A larval habitat of the biting midge Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae). Aust J Entomol 5:7–9

    Article  Google Scholar 

  • Carpenter S, Szmaragd C, Barber J et al (2008) An assessment of Culicoides surveillance techniques in northern Europe: have we underestimated a potential bluetongue virus vector? J Appl Ecol 45:1237–1245

    Google Scholar 

  • Conraths F, Eschbaumer M, Freuling C, et al (2012) Bluetongue disease: an analysis of the epidemic in Germany 2006–2009. In: Mehlhorn H (ed) Arthropods Vectors Emerg. Dis. Springer Berlin Heidelberg, pp 103–135

  • De Regge N, Deblauwe I, De Deken R et al (2012) Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR. Transbound Emerg Dis 59:471–475

    Article  PubMed  Google Scholar 

  • Dijkstra E, van der Ven IJK, Meiswinkel R et al (2008) Culicoides chiopterus as a potential vector of bluetongue virus in Europe. Vet Rec 162:422

    Article  CAS  PubMed  Google Scholar 

  • Elbers ARW, Meiswinkel R, van Weezep E et al (2013) Schmallenberg virus in Culicoides spp. biting midges, the Netherlands, 2011. Emerg Infect Dis 19:106–109

    Article  PubMed Central  PubMed  Google Scholar 

  • Goodenough AE, Hart AG, Stafford R (2012) Regression with empirical variable selection: description of a new method and application to ecological datasets. PLoS ONE 7:e34338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrup LE, Purse BV, Golding N et al (2013) Larval development and emergence sites of farm-associated Culicoides in the United Kingdom. Med Vet Entomol 27:441–449

    Article  CAS  PubMed  Google Scholar 

  • Kettle DS, Lawson JWH (1952) The early stages of British biting midges Culicoides Latreille (Diptera: Ceratopogonidae) and allied genera. Bull Entomol Res 43:421–467

    Article  Google Scholar 

  • Lühken R, Kiel E, Steinke S (2014) Impact of mechanical disturbance on the emergence of Culicoides from cowpats. Parasitol Res 113:1283–1287

    Article  PubMed  Google Scholar 

  • Mathieu B, Cêtre-Sossah C, Garros C et al (2012) Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from theWestern Palaearctic region. Parasit Vectors 5:137

    Article  PubMed Central  PubMed  Google Scholar 

  • Meiswinkel R, van Rijn P, Leijs P, Goffredo M (2007) Potential new Culicoides vector of bluetongue virus in northern Europe. Vet Rec 161:564–565

    Article  CAS  PubMed  Google Scholar 

  • Mellor PS, Boorman J, Baylis M (2000) Culicoides biting midges: their role as arbovirus vectors. Annu Rev Entomol 45:307–340

    Article  CAS  PubMed  Google Scholar 

  • Nevill H, Venter GJ, Meiswinkel R, Nevill EM (2007) Comparative descriptions of the pupae of five species of the Culicoides imicola complex (Diptera, Ceratopogonidae) from South Africa. Onderstepoort J Vet Res 74:97–114

    Article  PubMed  Google Scholar 

  • Nielsen SA, Nielsen BO, Chirico J (2010) Monitoring of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) on farms in Sweden during the emergence of the 2008 epidemic of bluetongue. Parasitol Res 106:1197–1203

    Article  PubMed  Google Scholar 

  • Peters J, Conte A, Van Doninck J et al (2013) On the relation between soil moisture dynamics and the geographical distribution of Culicoides imicola. Ecohydrology 7:622–632

    Article  Google Scholar 

  • Rasmussen LD, Kristensen B, Kirkeby C et al (2012) Culicoids as vectors of Schmallenberg virus. Emerg Infect Dis 18:1204–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569

    Article  CAS  Google Scholar 

  • Scolamacchia F, Van Den Broek J, Meiswinkel R et al (2013) Principal climatic and edaphic determinants of Culicoides biting midge abundance during the 2007-2008 bluetongue epidemic in the Netherlands, based on OVI light trap data. Med Vet Entomol 28:143–156

    Article  PubMed  Google Scholar 

  • Viennet E, Garros C, Lancelot R, Gardes XAL, Rakotoarivony I, Crochet D, Delecolle J-C, Moulia C, Baldet T, Balenghien T (2011) Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges. Int Pest Control 53:201

    Google Scholar 

  • Zimmer J-Y, Brostaux Y, Haubruge E, Francis F (2014) Larval development sites of the main Culicoides species (Diptera: Ceratopogonidae) in northern Europe and distribution of coprophilic species larvae in Belgian pastures. Vet Parasitol 205:676–686

    Article  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R, 1st edn. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We would like to give special thanks to Esther Timmermann for technical assistance during data collection. Furthermore, sincerest thanks are given to the farmer families who supported our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renke Lühken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lühken, R., Kiel, E., Steinke, S. et al. Topsoil conditions correlate with the emergence rates of Culicoides chiopterus and Culicoides dewulfi (Diptera: Ceratopogonidae) from cowpats. Parasitol Res 114, 1113–1117 (2015). https://doi.org/10.1007/s00436-014-4284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4284-z

Keywords

Navigation