Skip to main content
Log in

Toxoplasma gondii nucleus coding apicoplast protein ACP synthesis and trafficking in delayed death

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

This study aimed to explore Toxoplasma gondii nucleus coding apicoplast protein acyl carrier protein (ACP) synthesis and trafficking in delayed death. The recombinant T. gondii ACP was expressed by prokaryotic expression method, and anti-ACP polyclonal antibody was obtained from rabbit immune. T. gondii “delayed death” was induced by clindamycin (CLDM), and ACP transcription was determined by real-time PCR assay. The expression of ACP with transit type (t-ACP) and mature type (m-ACP) was determined by Western blotting with anti-ACP polyclonal antibody. The mutant-expressed ACP fused with green fluorescent protein (GFP) tag was constructed by pHX-ACP-GFP. The distribution of ACP in “delayed death” was observed by ACP-GFP fusion protein with a confocal microscope. T. gondii ACP transcription and t-ACP expression had no significant decrease in the early 4 h of “delayed death,” but there has been a significant decrease in 6 h. The expression of m-ACP had a significant decrease in 4 h which occurred earlier than the t-ACP expression. The number of brightly dot green fluorescence in ACP-GFP mutant decreased with prolonged time. There was very little brightly dot green fluorescence in ACP-GFP mutant when treated with CLDM for 6 h. CLDM could suppress apicoplast proliferation and induce T. gondii “delayed death”; however, it could not directly suppress nucleus coding ACP transcription and expression. T. gondii lacking of apicoplast had a barrier of transit peptide cleavage and t-ACP could not be transformed into m-ACP. The reason for the decrease in ACP expression could be due to excessive t-ACP synthesis in tachyzoites resulting in a negative feedback for the ACP coding gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Botté CY, Dubar F, McFadden GI, Maréchal E, Biot C (2012) Plasmodium falciparum apicoplast drugs: targets or off-targets? Chem Rev 112(3):1269–1283. doi:10.1021/ cr200258w

    Article  PubMed  CAS  Google Scholar 

  • Choi SR, Mukherjee P, Avery MA (2008) The fight against drug-resistant malaria: novel plasmodial targets and antimalarial drugs. Curr Med Chem 15(2):161–171

    Article  PubMed  CAS  Google Scholar 

  • Coppens I, Andries M, Liu JL, Cesbron-Delauw MF (1999) Intracellular trafficking of dense granule proteins in Toxoplasma gondii and experimental evidences for a regulated exocytosis. Eur J Cell Biol 78(7):463–472

    Article  PubMed  CAS  Google Scholar 

  • Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, Seeber F (2006) Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. Embo J 25(13):3214–3222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dahl EL, Rosenthal PJ (2008) Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol 24(6):279–284. doi:10.1016/j. pt.2008. 03.007

    Article  PubMed  CAS  Google Scholar 

  • Dautu G, Ueno A, Munyaka B, Carmen G, Makino S, Kobayashi Y, Igarashi M (2008) Molecular and biochemical characterization of Toxoplasma gondii beta-hydroxyacyl-acyl carrier protein dehydratase (FABZ). Parasitol Res 102(6):1301–1309. doi:10.1007/ s00 436-008-0909-4

    Article  PubMed  Google Scholar 

  • DeRocher A, Hagen CB, Froehlich JE, Feagin JE, Parsons M (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113(Pt22):3969–3977

    PubMed  CAS  Google Scholar 

  • DeRocher A, Gilbert B, Feagin JE, Parsons M (2005) Dissection of brefeldin A-sensitive and-insensitive steps in apicoplast protein targeting. J Cell Sci 118(Pt3):565–574

    Article  PubMed  CAS  Google Scholar 

  • Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407–409

    Article  PubMed  CAS  Google Scholar 

  • Fichera ME, Bhopale MK, Roos DS (1995) In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii. Antimicrob Agents Chemother 39(7):1530–1537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fleige T, Limenitakis J, Soldati-Favre D (2010) Apicoplast: keep it or leave it. Microbes Infect 12(4):253–262

    Article  PubMed  Google Scholar 

  • Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708

    Article  PubMed  CAS  Google Scholar 

  • Harb OS, Chatterjee B, Fraunholz MJ, Crawford MJ, Nishi M, Roos DS (2004) Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 3(3):663–674

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim K, Soldati D, Boothroyd JC (1993) Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. Science 262:911–914

    Article  PubMed  CAS  Google Scholar 

  • Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJ, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar J, Wilson HE, Masek KA, Hunter C, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci U S A 103(35):13192–13197

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Parsons M, Karnataki A, Derocher AE (2009) Evolving insights into protein trafficking to the multiple compartments of the apicomplexan plastid. J Eukaryot Microbiol 56(3):214–220. doi:10.1111/j.1550-7408.2009.00405.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pfluger SL, Goodson HV, Moran JM, Ruggiero CJ, Ye X, Emmons KM, Hager KM (2005) Receptor for retrograde transport in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 4(2):432–442

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ridley RG (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415:686–693

    Article  PubMed  CAS  Google Scholar 

  • Soldati D, Boothroyd JC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260:349–352

    Article  PubMed  CAS  Google Scholar 

  • Striepen B, He CY, Matrajt M, Soldati D, Roos DS (1998) Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii. Mol Biochem Parasitol 92(2):325–338

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, McFadden GI (2005) The apicoplast: a review of the derived plastid of apicomplexan parasites. Curr Issues Mol Biol 7(1):57–79

    PubMed  Google Scholar 

  • Wiesner J, Reichenberg A, Heinrich S, Schlitzer M, Jomaa H (2008) The plastid-like organelle of apicomplexan parasites as drug target. Curr Pharm Des 14(9):855–871

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Dominique Soldati-Favre of the Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva and Professor Marilyn Parsons and Amy DeRocher for the kind gift of experimental material and direction. This study received financial support from the National Natural Science Foundation of China (grant number 81301453), the Laboratory of Parasite and Vector Biology of China, MOPH (grant number WSBKTKT201302), the China Postdoctoral Science Foundation (grant number 2014 M561598), Jiangsu Postdoctoral Science Foundation (grant number 1402171C), the Senior Talent Studying Initial Funding of Jiangsu University (grant number 13JDG023, 13JDG127), and the Graduate Student Creative project of Jiangsu Province (grant number CX10B_282Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengxia Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Shen, J., Zhou, Y. et al. Toxoplasma gondii nucleus coding apicoplast protein ACP synthesis and trafficking in delayed death. Parasitol Res 114, 1099–1105 (2015). https://doi.org/10.1007/s00436-014-4281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4281-2

Keywords

Navigation