Skip to main content
Log in

The effect of weather variables on the flight activity of horseflies (Diptera: Tabanidae) in the continental climate of Hungary

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Although the tabanid species and populations occurring in eastern central Europe (Carpathian Basin) are thoroughly studied, there are only sporadic data about the influence of weather conditions on the abundance and activity of horseflies. To fill in this lack, in Hungary, we performed a 3-month summer survey of horsefly catches registering the weather parameters. Using common canopy traps and polarization liquid traps, we found the following: (i) rainfall, air temperature, and sunshine were the three most important factors influencing the trapping number of tabanids. (ii) The effect of relative air humidity H on tabanids was indirect through the air temperature T: H ≈ 35 % (corresponding to T ≈ 32 °C) was optimal for tabanid trapping, and tabanids were not captured for H ≥ 80 % (corresponding to T ≤ 18 °C). (iii) A fast decrease in the air pressure enhanced the trapping number of both water-seeking and host-seeking horseflies. (iv) Wind velocities larger than 10 km/h reduced drastically the number of trapped tabanids. Our data presented here may serve as a reference for further investigations of the effect of climate change on tabanids in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amano K (1985) Statistical analysis of the influence of meteorological factors on flight activity of female tabanids. Kontyu, Tokyo 53:161-172

  • Baldacchino F, Carier J, Porciani A, Buatois B, Dormont L, Jay-Robert P (2013) Behavioural and electrophysiological responses of females of two species of tabanid to volatiles in urine of different mammals. Med Vet Entomol 27:77–85

    Article  PubMed  CAS  Google Scholar 

  • Baldacchino F, Porciani A, Bernard C, Jay-Robert P (2014a) Spatial and temporal distribution of tabanidae in the Pyrenees mountains: the influence of altitude and landscape structure. Bull Entomol Res 104:1–11

    Article  PubMed  CAS  Google Scholar 

  • Baldacchino F, Manon S, Puech L, Buatois B, Dormont L, Jay-Robert P (2014b) Olfactory and behavioural responses of tabanids to octenol, phenols and aged horse urine. Med Vet Entomol 28:201–209

    Article  PubMed  CAS  Google Scholar 

  • Bartholy J, Pongrácz R, Gelybó G (2007) Regional climate change expected in Hungary for 2071–2100. Appl Ecol Environ Res 5:1–17

    Article  Google Scholar 

  • Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revisited: from Köppen to Trewartha. Clim Res 59:1–13

    Article  Google Scholar 

  • Blahó M, Egri Á, Barta A, Antoni G, Kriska G, Horváth G (2012a) How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics. Vet Parasitol 189:353–365

    Article  PubMed  Google Scholar 

  • Blahó M, Egri Á, Báhidszki L, Kriska G, Hegedüs R, Åkesson S, Horváth G (2012b) Spottier targets are less attractive to tabanid flies: on the tabanid-repellency of spotty fur patterns. PLoS ONE 7(8):e41138, doi:10.1371/journal.pone.0041138 + supporting information

  • Burnett AM, Hays KL (1974) Some influences of meteorological factors on flight activity of female horse flies (Diptera: Tabanidae). Environ Entomol 3:515–521

    Article  Google Scholar 

  • Cárdenas RE, Hernández LN, Barragán ÁR, Dangles O (2013) Differences in morphometry and activity among tabanid fly assemblages in an Andean tropical Montane cloud forest: indication of altitudinal migration? Biotropica 45:63–72

    Article  Google Scholar 

  • Chvála M, Jezek J (1997) Diptera Tabanidae, horseflies. In: Aquatic Insects of North Europe, A taxonomic Handbook. Volume 2. Odonata-Diptera. (ed: A Nilsson) Apollo Books, Stenstrup pp 295-307

  • Dale WE, Axtell RC (1975) Flight of the salt marsh Tabanidae (Diptera), Tabanus nigrovittatus, Chrysops antlanticus and C. fuliginosus correlation with temperature, light, moisture and wind velocity. J Med Entomol 12:551–557

    Article  PubMed  CAS  Google Scholar 

  • Dethier VG (1957) Parasitological reviews: the sensory physiology of blood-sucking arthropods. Exp Parasitol 6:68–122

    Article  PubMed  CAS  Google Scholar 

  • Dvorák L (2011) Some data to horsefly fauna (Diptera: Tabanidae) in south-eastern part of the Bohemian Forest, Czech Republic, with notes to Hybomitra arpadi (Szilády 1923). Silva Gabreta 17:73–81

    Google Scholar 

  • ECDC (2009) (European Centre for Disease Prevention and Control) Aedes albopictus risk maps. ECDC Technical Report, Stockholm, May 2009 (www.ecdc.europa.eu/en/publications)

  • EFSA (2010) (European Food Safety Authority) Panel on Animal Health and Welfare; Scientific Opinion on Geographic Distribution of Tick-borne Infections and their Vectors in Europe and the other Regions of the Mediterranean Basin. EFSA Journal 8(9):1723 (pp. 1-259) doi:10.2903/j.efsa.2010.1723, www.efsa.europa.eu/efsajournal.htm

  • Egri Á, Blahó M, Sándor A, Kriska G, Gyurkovszky M, Farkas R, Horváth G (2012) New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften 99:407-416 + electronic supplement

  • Egri Á, Blahó M, Száz D, Kriska G, Majer J, Herczeg T, Gyurkovszky M, Farkas R, Horváth G (2013) A horizontally polarizing liquid trap enhances the tabanid-capturing efficiency of the classic canopy trap. Bull Entomol Res 103:665–674

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Thomas SM, Suk JE, Sudre B, Hess A, Tjaden NB, Beierkuhnlein C, Semenza JC (2013) Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability an virus' temperature requirements. Int J Health Geogr 12:51 (http://www.ij-healthgeographics.com/content/12/1/51)

    Article  PubMed Central  PubMed  Google Scholar 

  • Foil LD (1989) Tabanids as vectors of disease agents. Parasitol Today 5:88–96

    Article  PubMed  CAS  Google Scholar 

  • Foil LD, Hogsette JA (1994) Biology and control of tabanids, stable flies and horn flies. Rev Sci Tech 13:1125–1158

    PubMed  CAS  Google Scholar 

  • Garza M, Feria Arroyo TP, Casillas EA, Sanchez-Cordero V, Rivaldi C-L, Sarkar S (2014) Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. PLoS Negl Trop Dis 8(5):e2818. doi:10.1371/journal.pntd.0002818

    Article  PubMed Central  PubMed  Google Scholar 

  • Gehring CA, Mueller RC, Haskins KE, Rubow TK, Whitham TG (2014) Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants. Frontiers in Microbiology 5: Article 306, pp. 1-9, doi: 10.3389/fmicb.2014.00306

  • Gething PW, Elyazar IRF, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF, George DB, Horby P, Wertheim HFL, Price RN, Müeller I, Baird JK, Graczyk TK, Knight R, Tamang L (2005) Mechanical transmission of human protozoan parasites by insects. Clin Microbiol Rev 18:128–132

    Article  Google Scholar 

  • Goodwin JT, Drees BM (1996) The horse and deer flies (Diptera, Tabanidae) in Texas. Southwestern Entomol Suppl I-III: 1-140

  • Gyuranecz M, Birdsell DN, Splettstoesse W, Seibold E, Beckstrom-Sternberg SM, Makrai L, Fodor L, Fabbi M, Vicari N, Johansson A, Busch JD, Vogler AJ, Keim P, Wagner DM (2012) Phylogeography of Francisella tularensis subsp. holarctica, Europe. Emerg Infect Dis 18:290–293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hackenberger BK, Jaric D, Krcmar S (2009) Distribution of tabanids (Diptera: Tabanidae) along a two-sided altitudinal transect. Environ Entomol 38:1600–1607

    Article  PubMed  Google Scholar 

  • Herczeg T, Blahó M, Száz D, Kriska G, Gyurkovszky M, Farkas R, Horváth G (2014) Seasonality and daily activity of male and female tabanid flies monitored in a Hungarian hill-country pasture by new polarization traps and traditional canopy traps. Parasitol Res 113:4251–4260

  • Hornok S, Elek V, de la Fuente J, Naranjo V, Farkas R, Majoros G, Földvári G (2007) First serological and molecular evidence on the endemicity of Anaplasma ovis and A-marginale in Hungary. Vet Microbiol 122:316–322

    Article  PubMed  CAS  Google Scholar 

  • Hornok S, Mester A, Takács N, Fernández de Mera IG, de la Fuente J, Farkas R (2014) Re-emergence of bovine piroplasmosis in Hungary: has the etiological role of Babesia divergens been taken over by B. major and Theileria buffeli? Parasites Vectors 7:434 (www.parasitesandvectors.com/content/7/1/434)

  • Horváth G, Blahó M, Egri Á, Kriska G, Seres I, Robertson B (2010a) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Cons Biol 24:1644-1653 + electronic supplement

  • Horváth G, Blahó M, Kriska G, Hegedüs R, Gerics B, Farkas R, Åkesson S (2010b) An unexpected advantage of whiteness in horses: the most horsefly-proof horse has a depolarizing white coat. Proc Roy Soc B 277:1643–1650

    Article  Google Scholar 

  • Josephson RK, Malamud JG, Stokes DR (2000) Power output by an asynchronous flight muscle from a beetle. J Exp Biol 203:2667–2689

    PubMed  CAS  Google Scholar 

  • Kohane MJ, Watt WB (1999) Flight-muscle adenylate pool responses to flight demands and thermal constraints in individual Colias eurytheme (Lepidoptera, Pieridae). J Exp Biol 202:3145–3154

    PubMed  CAS  Google Scholar 

  • Krcmar S (2005) Seasonal abundance of horseflies (Diptera: Tabanidae) from two locations in eastern Croatia. J Vector Ecol 30:316–321

    PubMed  Google Scholar 

  • Krcmar S (2011) Preliminary list of horseflies (Diptera, Tabanidae) of Serbia. ZooKeys 117:73–81

    Article  PubMed  Google Scholar 

  • Krcmar S, Maric S (2006) Analysis of the feeding sites for some horseflies (Diptera, Tabanidae) on a human in Croatia. Coll Antropol 30:901–904

    PubMed  Google Scholar 

  • Krcmar S, Mikuska A, Jasika M (2009) Horse fly fauna of three different forest communities in the Danube river floodplain in Croatia (Diptera: Tabanidae). Entomol Gen 32:23–34

    Article  Google Scholar 

  • Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Inst Physiol 55:1167–1173

    Article  CAS  Google Scholar 

  • Lehane MJ (2005) The biology of blood-sucking in insects, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Luger SW (1990) Lyme disease transmitted by a biting fly. New Engl J Med 322:1752–1759

    PubMed  CAS  Google Scholar 

  • Maat-Bleeker F, van Bronswijk JEMH (1995) Allergic reactions caused by bites from blood-sucking insects of the Tabanidae family, species Haematopota pluvialis (L.). Allergy 50 (Suppl. 26): 388 (abstract)

  • Majer J (1987) Tabanids - Tabanidae. Fauna Hungariae 14(9):1-57, Academic Press, Budapest (in Hungarian)

  • Majer J (2001) Checklist of horseflies of Somogy county (Diptera: Tabanidae). Natura Somogyiensis 1:399–404 (in Hungarian)

    Google Scholar 

  • Middlekauff WW, Lane RS (1980) Adult and immature tabanidae (Diptera) of California. Bull Calif Inst Surv 22:1–99

    Google Scholar 

  • Muirhead-Thomson RC (1991) Responses of blood-sucking flies to visual traps. Chapter 7, pp 197-223, In: Trap Responses of Flying Insects. The Influence of Trap Design on Capture Efficiency. Academic Press, Harcourt Brace Jovanovich, London, New York, Sidney, Tokyo, Toronto

  • Ogden NH, Radojevic M, Wu X, Duvvuri VR, Leighton PA, Wu J (2014) Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ Health Perspect 122:631–638

    PubMed Central  PubMed  Google Scholar 

  • Oliveira AF, Ferreira RLM, Rafael JA (2007) Seasonality and diurnal activity of tabanidae (Diptera: Insecta) of canopy in the Adolpho Ducke forested reserve, Manaus, Amazonas state, brazil. Neotropical Entomol 36:790–797 (in Portuguese)

    Article  Google Scholar 

  • Parvu C (2008) The occurrence of the dipterans (Insecta: Diptera) in Bucuresti and its surroundings. Travaux du Muséum National d'Histoire Naturelle Grigore Antipa 51:417–442

    Google Scholar 

  • Pybus J, Tragear RT (1975) The relationship of adenosine triphosphatase activity to tension and power output of insect flight muscle. J Physiol 247:71–89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/

    Google Scholar 

  • Roberts RH (1974) Diurnal activity of Tabanidae based on collections in Malaise traps. Mosq News 34:220–223

    Google Scholar 

  • Romo CM, Tylianakis JM (2013) Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts. PLoS ONE 8(3):e58136. doi:10.1371/journal.pone.0058136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Strickman D, Hagan DV (1986) Seasonal and meteorological effects on activity of Chrysops variegatus (Diptera: Tabanidae) in Paraguay. J Am Mosq Cont Assoc 2:212–216

    CAS  Google Scholar 

  • Thomas AW (1973) Follicle developmental stages in blood-seeking horseflies (Diptera: Tabanidae) in Alberta, Canada. J Med Entomol 10:325–328

    Article  PubMed  CAS  Google Scholar 

  • Townroe S, Callaghan A (2014) British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology. PLoS ONE 9(4):e95325. doi:10.1371/journal.pone.0095325

    Article  PubMed Central  PubMed  Google Scholar 

  • Veer V, Parashar BD, Prakash S (2002) Tabanid and muscoid haematophagous flies, vectors of trypanosomiasis or surra disease in wild animals and livestock in Nandankanan Biological Park, Bhubaneshwar (Orissa, India). Curr Sci 82:500–502

    Google Scholar 

  • Wellington WG (1946) Some reactions of muscoid Diptera to changes in atmospheric pressure. Can J Res 24:105–117

    Article  Google Scholar 

  • Wilkerson RC, Fairchild GB (1984) A checklist and generic key to the Tabanidae (Diptera) of Peru with special reference to the Tambopata reserved zone, Madre de Dios. Revista Peruana de Entomologia 27:37–53

    Google Scholar 

  • Wolda H (1978) Fluctuations in abundance of tropical insects. Am Nat 112:1017–1045

    Article  Google Scholar 

  • Wyniger R (1953) Ecology, biology and breeding of various European tabanid species. Acta Top 10:310–347

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant TabaNOid 232366 (Trap for the Novel Control of Horse-flies on Open-air Fields) funded by the European Commission under the 7th Framework Programme received by G. Horváth and G. Kriska. The financial support from the grant OTKA K-105054 (Full-Sky Imaging Polarimetry to Detect Clouds and to Study the Meteorological Conditions Favorable for Polarimetric Viking Navigation) received by G. Horváth from the Hungarian Science Foundation is also acknowledged. Gábor Horváth thanks the German Alexander von Humboldt Foundation for an equipment donation. Many thanks to Csaba Viski (Szokolya, Hungary), who allowed our experiments on his horse farm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Horváth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2096 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herczeg, T., Száz, D., Blahó, M. et al. The effect of weather variables on the flight activity of horseflies (Diptera: Tabanidae) in the continental climate of Hungary. Parasitol Res 114, 1087–1097 (2015). https://doi.org/10.1007/s00436-014-4280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4280-3

Keywords

Navigation