Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies

Abstract

Mosquitoes (Diptera: Culicidae) represent a threat for millions of people worldwide, since they act as vectors for important pathogens, including malaria, yellow fever, dengue and West Nile. Second to malaria as the world’s most widespread parasitic disease, infection by trematodes is a devastating public health problem. In this study, we proposed two essential oils from plants cultivated in Mediterranean regions as effective chemicals against mosquitoes and freshwater snails vectors of Echinostoma trematodes. Chemical composition of essential oils from Achillea millefolium (Asteraceae) and Haplophyllum tuberculatum (Rutaceae) was investigated. Acute toxicity was evaluated against larvae of the West Nile vector Culex pipiens (Diptera: Culicidae) and the invasive freshwater snail Physella acuta (Mollusca: Physidae), an important intermediate host of many parasites, including Echinostoma revolutum (Echinostomidae). Acute toxicity of essential oils was assessed also on a non-target aquatic organism, the mayfly Cloeon dipterum (Ephemeroptera: Baetidae). Achillea millefolium and H. tuberculatum essentials oils were mainly composed by oxygenated monoterpenes (59.3 and 71.0 % of the whole oil, respectively). Chrysanthenone and borneol were the two major constituents of Achillea millefolium essential oil (24.1 and 14.2 %, respectively). Major compounds of H. tuberculatum essential oil were cis-p-menth-2-en-1-ol and trans-p-menth-2-en-1-ol (22.9 and 16.1 %, respectively). In acute toxicity assays, C. pipiens LC50 was 154.190 and 175.268 ppm for Achillea millefolium and H. tuberculatum, respectively. P. acuta LC50 was 112.911 and 73.695 ppm for Achillea millefolium and H. tuberculatum, respectively, while the same values were 198.116 and 280.265 ppm for C. dipterum. Relative median potency analysis showed that both tested essential oils were more toxic to P. acuta over C. dipterum. This research adds knowledge on plant-borne chemicals toxic against invertebrates of medical importance, allowing us to propose the tested oils as effective candidates to develop newer and safer vector control tools.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  2. Adams RP (1995) Identification of essential oil components by gas chromatography-mass spectroscopy. Allured, Carol Stream

    Google Scholar 

  3. Al-Burtamani SKS, Fatope MO, Marwah RG, Onifade AK, Al-Saidi SH (2005) Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman. J Ethnopharmacol 96:107–112

    Article  PubMed  CAS  Google Scholar 

  4. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  5. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  6. Andrews P, Thyssen J, Lorke D (1982) The biology and toxicology of molluscicides, Bayluscide. Pharmacol Ther 19:245–295

    Article  PubMed  CAS  Google Scholar 

  7. Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Hader D-P (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326

    Article  PubMed  Google Scholar 

  8. Barragán-Sáenz FA, Sánchez-Nava P, Hernández-Gallegos O, Salgado-Maldonado G (2009) Larval stages of trematodes in gastropods from Lake Chicnahuapan, State of Mexico, Mexico. Parasitol Res 105:1163–1167

    Article  PubMed  Google Scholar 

  9. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Bor Zoon Dis 7:76–85

    Article  Google Scholar 

  10. Benelli G (2015) The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-014-4252-7

  11. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161

    Article  PubMed  Google Scholar 

  12. Benelli G, Canale A, Conti B (2014a) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacol Online 1:44–51

    Google Scholar 

  13. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2014b) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res. doi:10.1007/s00436-014-4183-3

    Google Scholar 

  14. Benelli G, Conti B, Garreffa R, Nicoletti M (2014c) Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 113:933–940

    Article  PubMed  Google Scholar 

  15. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res. doi:10.1007/s00436-014-4286-x

  16. Bernot RJ, Kennedy EE, Lamberti GA (2005) Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environ Toxicol Chem 24:1759–1765

    Article  PubMed  CAS  Google Scholar 

  17. Brackenbury TD (1999) The molluscicidal properties of Apodytes dimidiata (Icacinaceae): geographical variation in molluscicidal potency. Ann Trop Med Hyg 93:511–518

    Article  CAS  Google Scholar 

  18. Caminade C, Medlock JM, Ducheyne E, McIntryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chifundera K, Baluku B, Mashimango B (1993) Phytochemical screening and molluscicidal potency of some Zairean medicinal plants. Pharmacol Res 28:333–340

    Article  PubMed  CAS  Google Scholar 

  20. Chitsulo L, Engels D, Montresor A, Savioli L (2000) The global status of schistosomiasis and its control. Acta Trop 77:41–51

    Article  PubMed  CAS  Google Scholar 

  21. Clark TE, Appleton CC, Drewes SE (1997) A semi- quantitative approach to the selection of appropriate candidate plant molluscicides - a South African application. J Ethnopharmacol 56:1–13

    Article  PubMed  CAS  Google Scholar 

  22. Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1462

    Article  PubMed  Google Scholar 

  23. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2012a) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 110:2013–2021

    Article  PubMed  Google Scholar 

  24. Conti B, Benelli G, Leonardi M, Afifi UF, Cervelli C, Profeti R, Pistelli L, Canale A (2012b) Repellent effect of Salvia dorisiana, S. longifolia and S. sclarea (Lamiaceae) essential oils against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 111:291–299

    Article  PubMed  Google Scholar 

  25. Conti B, Leonardi M, Pistelli L, Profeti R, Ouerghemmi I, Benelli G (2013) Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res 112:991–999

    Article  PubMed  Google Scholar 

  26. Conti B, Flamini G, Cioni PL, Ceccarini L, Macchia M, Benelli G (2014) Mosquitocidal essential oils: are they safe against non-target aquatic organisms? Parasitol Res 113:251–259

    Article  PubMed  Google Scholar 

  27. da Silva CLPAC, Vargas TS, Baptista DF (2013) Molluschicidal activity of Moringa oleifera on Biomphalaria glabrata: integrated dynamics to the control of the snail host of Schistosoma mansoni. Rev Bras Farmacogn 23:848–850

    Article  Google Scholar 

  28. Davies NW (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and carbowax 20M phases. J Chromatogr 503:1–24

    Article  CAS  Google Scholar 

  29. Evergetis E, Michaelakis A, Kioulos E, Koliopoulos G, Haroutounian SA (2009) Chemical composition and larvicidal activity of essential oils from six Apiaceae family taxa against the West Nile virus vector Culex pipiens. Parasitol Res 105:117–124

    Article  PubMed  CAS  Google Scholar 

  30. Faltýnková A (2005) Larval trematodes (Digenea) in molluscs from small water bodies near Šeské Budšjovice, Czech Republic. Acta Parasitol 52:49–55

    Google Scholar 

  31. Faltýnková A, Haas W (2006) Larval trematodes in freshwater molluscs from the Elbe to Danube rivers (Southeast Germany): before and today. Parasitol Res 99:572–582

    Article  PubMed  Google Scholar 

  32. Fokin SI, Di Giuseppe G, Erra F, Dini F (2008) Euplotespora binucleata n. gen., n. sp. (Protozoa: Microsporidia), a parasite infecting the hypotrichous ciliate Euplotes woodruffi, with observations on microsporidian infections in Ciliophora. J Eukaryot Microbiol 55:214–228

    Article  PubMed  CAS  Google Scholar 

  33. Folmer O, Hoeh WR, Black MB, Vrijenhoek RL (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  34. Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, Tzakou O, Michaelakis A (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1113–1123

    Article  PubMed  Google Scholar 

  35. Gleiser RM, Bonino MA, Zygadlo JA (2011) Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti. Parasitol Res 108:69–78

    Article  PubMed  Google Scholar 

  36. Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620

    Article  PubMed  Google Scholar 

  37. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367

    Article  PubMed  CAS  Google Scholar 

  38. Grandi M (1960) Ephemeroidea. Fauna d’Italia, vol. III. Calderini, Bologna

    Google Scholar 

  39. Hai GY, Min WC, Jing J, Xuan HH (2009) Physa acuta found in Beijing, China. Chin J Zool 44:127–128

    Google Scholar 

  40. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  PubMed  CAS  Google Scholar 

  41. Jaiswal P, Singh DK (2009) Mollusicidal activity of nutmeg and mace (Myristica fragrans Houtt.) against the vector snail Lymnaea acuminata. J Herbs Spices Med Plants 15:177–186

    Article  Google Scholar 

  42. Jennings W, Shibamoto T (1980) Qualitative analysis of flavour and fragrance volatiles by glass capillary chromatography. Academic Press, New York

    Google Scholar 

  43. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627

    Article  PubMed  Google Scholar 

  44. Keiser J, Utzinger J (2004) Chemotherapy for major food-borne trematodes: a review. Expert Opin Pharmacother 5:1711–1726

    Article  PubMed  CAS  Google Scholar 

  45. Kimbaris AC, Koliopoulos G, Michaelakis A, Konstantopoulou MA (2012) Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol Res 111:2403–2410

    Article  PubMed  Google Scholar 

  46. Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335

    Article  PubMed  Google Scholar 

  47. Kraus TJ, Brant SV, Adema CM (2014) Characterization of Trematode Cercariae from Physella acuta in the Middle Rio Grande. Comp Parasitol 81:105–109

    Article  Google Scholar 

  48. Kumar P, Singh VK, Tripathi CPM, Singh DK (2010) Effects of molluscicidal constituents in spices on reproduction in snails. J Herbs Spices Med Plants 16:24–35

    Article  CAS  Google Scholar 

  49. Lahlou M (2003) Composition and molluscicidal properties of essential oils of five Moroccan Pinaceae. Pharm Biol 41:207–210

    Article  CAS  Google Scholar 

  50. Lahlou M (2004) Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res 18:435–448

    Article  PubMed  CAS  Google Scholar 

  51. Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC et al (2014) Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop 132S:S2–S11

    Article  Google Scholar 

  52. Maldonado A Jr, Vieira GO, Garcia JS, Rey L, Lanfredi RM (2001) Biological aspects of a new isolate of Echinostoma paraensei Trematoda: Echinostomatidae): susceptibility of sympatric snails and the natural vertebrate host. Parasitol Res 87:853–859

    Article  PubMed  Google Scholar 

  53. Marking LL, Rach JJ, Schreier TM (1994) Evaluation of antifungal agents for fish culture. Progr Fish-Cultur 56:225–231

    Article  Google Scholar 

  54. Massada Y (1976) Analysis of essential oils by gas chromatography and mass spectrometry. Wiley, New York

    Google Scholar 

  55. McCage CM, Ward SM, Paling CA, Fisher DA, Flynn PJ, McLaughlin JL (2002) Development of a paw paw herbal shampoo for the removal of head lice. Phytomedicine 9:743–748

    Article  PubMed  CAS  Google Scholar 

  56. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  57. Mehlhorn H (2011) Parasites and their World records in their fight for survival. In: Mehlhorn H (ed) Progress in parasitology, parasitology research monographs vol. 2, Springer, pp 41–68

  58. Michaelakis A, Theotokatos SA, Koliopoulos G, Chorianopoulos NG (2008) Essential oils of Satureja species: insecticidal effect on Culex pipiens larvae (Diptera: Culicidae). Molecules 12:2567–2578

    Article  Google Scholar 

  59. Michaelakis A, Strongilos AT, Bouzas EA, Koliopoulos G, Couladouros EA (2009a) Larvicidal activity of naturally occurring naphthoquinones and derivatives against the West Nile virus vector Culex pipiens. Parasitol Res 104:657–662

    Article  PubMed  Google Scholar 

  60. Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou MG (2009b) Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol Res 105:769–773

    Article  PubMed  Google Scholar 

  61. Mills C, Cleary BJ, Gilmer JF, Walsh JJ (2004) Inhibition of acetylcholinesterase by tea tree oil. J Pharm Pharmacol 56:375–379

    Article  PubMed  CAS  Google Scholar 

  62. Mohsen ZH, Jaffer HJ, Alsaadi AZS (1989) Insecticidal effects of Haplophyllum tuberculatum against Culex quinquefasciatus. Pharm Biol 27:17–21

    Article  Google Scholar 

  63. Muñoz-Antoli C, Trelis M, Toledo R, Esteban JG (2006) Infectivity of Echinostoma friedi miracidia to different snail species under experimental conditions. J Helminthol 80:323–325

    PubMed  Google Scholar 

  64. Muñoz-Antoli C, Marin A, Vidal A, Toledo R, Esteban JG (2008) Euparyphium albuferensis and Echinostoma friedi (Trematoda: Echinostomatidae): experimental cercarial transmission success in sympatric snail communities. Folia Parasitol 52:122–126

    Article  Google Scholar 

  65. Noudjou F, Kouninki H, Ngamo LST, Maponmestsem PM, Ngassoum M, Hance T, Haubruge E, Malaisse F, Marlier M, Lognay GC (2007) Effect of site location and collecting period on the chemical composition of Hyptis spicigera Lam. An insecticidal essential oil from North-Cameroon. J Essent Oil Res 19:597–601

    Article  CAS  Google Scholar 

  66. Oliva CF, Damiens D, Benedict MQ (2014) Male reproductive biology of Aedes mosquitoes. Acta Trop 132S:S512–S519

    Google Scholar 

  67. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microbes Infect 11:1177–1185

    Article  PubMed  CAS  Google Scholar 

  68. Pavela R (2009) Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind Crop Prod 30:311–315

    Article  CAS  Google Scholar 

  69. Peng Z, Yang J, Wang H, Simons FER (1999) Production and characterisation of monoclonal antibodies to two new mosquito Aedes aegypti salivary protein. Insect Biochem Mol Biol 29:909–914

    Article  PubMed  CAS  Google Scholar 

  70. Pinto HA, de Melo AL (2012) Physa marmorata (Molusca: Phisidae) as intermediate host of Echinostoma exile (Trematoda: Echinostomatidae) in Brazil. Neotropical Helminthol 6:291–299

    Google Scholar 

  71. Pinto HA, Sara V, Brant SV, de Melo AL (2014) Physa marmorata (Mollusca: Physidae) as a natural intermediate host of Trichobilharzia (Trematoda: Schistosomatidae), a potential causative agent of avian cercarial dermatitis in Brazil. Acta Trop 138:38–43

    Article  PubMed  Google Scholar 

  72. Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 23:208–212

    PubMed  CAS  Google Scholar 

  73. Radwan MA, El-Zemity SR, Mohamed SA, Sherby SM (2008) Potential of some monoterpenoids and their new N-methyl carbamate derivatives against Schistosomiasis snail vector, Biomphalaria alexandrina. Ecotoxicol Environ Saf 71:889–894

    Article  PubMed  CAS  Google Scholar 

  74. Rajkumar S, Jebanesan A (2005) Repellency of volatile oils from Moschosma polystachyum and Solanum xanthocarpum against filarial vector Culex quinquefasciatus Say. Trop Biomed 22:139–142

    PubMed  CAS  Google Scholar 

  75. Rapado LN, Nakano E, Ohlweiler FP, Kato MJ, Yamaguchi LF, Pereira CA, Kawano T (2011) Molluscicidal and ovicidal activities of plant extracts of the Piperaceae on Biomphalaria glabrata (Say, 1818). J Helminthol 85:66–72

  76. Salama MM, Taher EE, El-Bahy MM (2012) Molluscicidal and mosquitocidal activities of the essential oils of Thymus capitatus Hoff et Link. and Marrubium vulgare L. Rev Inst Med Trop Sao Paulo 54:281–286

    Article  PubMed  Google Scholar 

  77. Schall VT, Vasconcellos MC, Rocha RS, Souza CP, Mendes NM (2001) The control of the schistosome-transmitting snail Biomphalaria glabrata by the plant Molluscicide Euphorbia splendens var. hislopii (syn milli Des. Moul): a longitudinal field study in an endemic area in Brazil. Acta Trop 79:165–170

    Article  PubMed  CAS  Google Scholar 

  78. Seeland A, Albrand J, Oehlmann J, Müller R (2013) Life stage-specific effects of the fungicide pyrimethanil and temperature on the snail Physella acuta (Draparnaud, 1805) disclose the pitfalls for the aquatic risk assessment under global climate change. Environ Pollut 174:1–9

    Article  PubMed  CAS  Google Scholar 

  79. Severini C, Romi R, Marinucci M, Rajmond M (1993) Mechanism of insecticide resistance in field populations of Culex pipiens from Italy. J Am Mosq Control Assoc 9:164–168

    PubMed  CAS  Google Scholar 

  80. Singh A, Singh VK (2009) Molluscicidal activity of Saraca asoca and Thuja orientalis against the fresh water snail Lymnaea acuminata. Vet Parasitol 164:206–2010

    Article  PubMed  Google Scholar 

  81. Singh SK, Yadav RP, Tiwari S, Singh A (2005) Toxic effect of stem bark and leaf of Euphorbia hirta plant against freshwater vector snail Lymnaea acuminata. Chemosphere 59:263–270

    Article  PubMed  CAS  Google Scholar 

  82. Singh SK, Yadav RP, Singh A (2010) Molluscicides from some common medicinal plants of eastern Uttar Pradesh, India. J Appl Toxicol 30:1–7

    Article  PubMed  CAS  Google Scholar 

  83. Sohn W-M, Chai J-Y, Yong T-S, Eom KS, Yoon C-H, Sinuon M et al (2011) Echinostoma revolutum infection in children, Pursat Province, Cambodia. Emerg Infect Dis 17:117–119

    Article  PubMed Central  PubMed  Google Scholar 

  84. Stenhagen E, Abrahamson S, McLafferty FW (1974) Registry of mass spectral data. Wiley, New York

    Google Scholar 

  85. Sun H, Sun L, He J, Shen B, Yu J, Chen C, Yang M, Sun Y, Zhang D, Ma L, Zhu C (2011) Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens. Parasitol Res 109:1689–1697

    Article  PubMed  Google Scholar 

  86. Swigar AA, Silverstein RM (1981) Monoterpenes. Aldrich Chem Comp, Milwaukee

    Google Scholar 

  87. Tchoumbougang F, Amvam Zollo PH, Fecam Boyom F, Nyegue MA, Bessière JM (2005) Aromatic plants of Tropical Central Africa. XLVIII. Comparative study of the essential oils of four Hyptis species from Cameroon: H. lanceolata Poit., H. pectinata (L.) Poit., H. spicigera Lam. and H. suaveolens Poit. Flavour Fragr J 20:340–343

    Article  CAS  Google Scholar 

  88. Teixeira T, Rosa JS, Rainha N, Baptista J, Rodrigues A (2012) Assessment of molluscicidal activity of essential oils from five Azorean plants against Radix peregra (Muller, 1774). Chemosphere 87:1–6

    Article  PubMed  CAS  Google Scholar 

  89. Toledo R, Muñoz-Antolí C, Pérez M, Esteban JG (1999) Miracidial infectivity of Hypoderaeum conoideum (Trematoda: Echinostomatidae): differential susceptibility of two lymnaeid species. Parasitol Res 85:212–215

    Article  PubMed  CAS  Google Scholar 

  90. Toledo R, Muñoz-Antolí C, Esteban JG (2000) The life-cycle of Echinostoma friedi n. sp. (Trematoda: Echinostomatidae) in Spain and a discussion on the relationships within the ‘revolutum’ group based on cercarial chaetotaxy. Syst Parasitol 45:199–217

    Article  PubMed  CAS  Google Scholar 

  91. Wethington AR, Lydeard C (2007) A molecular phylogeny of physidae (gastropoda: basommatophora) based on mitochondrial DNA sequences. J Molluscan Stud 73:241–257

    Article  Google Scholar 

  92. WHO (1981) Instruction for determining the susceptibility or resistance of mosquito larvae to insecticide. WHO/VBC/81.807.Control of Tropical Diseases. World Health Organization, Geneva

    Google Scholar 

  93. WHO (2014) Foodborne trematodiases. Fact sheet N°368

  94. Yari M, Masoudi S, Rustaiyan A (2000) Essential oil of Haplophyllum tuberculatum (Forssk.) A. Juss. grown wild in Iran. J Essent Oil Res 12:69–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Heinz Mehlhorn and the anonymous reviewers for their comments on an earlier version of the manuscript. We are grateful to Alfio Raspi for specific identification of C. pipiens and C. dipterum. Paolo Giannotti and Riccardo Antonelli kindly provided the artworks. Giovanni Benelli is supported by an MIS 124 MODOLIVI Grant. Funds were also provided by the Italian Ministry of Education, University and Research (MIUR). Funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare no competing interests.

Authors’ contributions

GB and BC conceived and designed the experiments. GB, GF, SB, FC, PLC, GDG and BC performed the experiments. GB, SB, GF and GDG analysed the data. GB, GF, SB, SA, FB, HL, GDG and BC contributed reagents/materials/analysis tools. GB wrote the paper.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Giovanni Benelli or Barbara Conti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benelli, G., Bedini, S., Flamini, G. et al. Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res 114, 1011–1021 (2015). https://doi.org/10.1007/s00436-014-4267-0

Download citation

Keywords

  • Achillea millefolium
  • Haplophyllum tuberculatum
  • GC-MS analysis
  • Mosquito-borne diseases
  • Echinostomiasis
  • Trematoda
  • Non-target aquatic organisms