Skip to main content

Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites

Abstract

Neem seed oil (NSO) of Azadirachta indica (Meliaceae) contains more than 100 determined biologically active compounds, and many formulations deriving from them showed toxicity, antifeedancy and repellence against a number of arthropod pests. However, it is widely known that botanical products can differ in their chemical composition and bioactivity, as function of the production site and production process. We used high-performance thin layer chromatography (HPTLC) to investigate differences in chemical constituents of NSOs from three production sites. HPTLC analyses showed several differences in chemical abundance and diversity among NSOs, with special reference to limonoids. Furthermore, the three NSOs and their fractions of increasing polarities [i.e. ethyl acetate (EA) fraction and butanol (BU) fraction] were evaluated for larvicidal toxicity and field oviposition deterrence against the Asian tiger mosquito, Aedes albopictus, currently the most invasive mosquito worldwide. Results from bioactivity experiments showed good toxicity of NSOs and EA fractions against A. albopictus fourth instar larvae (with LC50 values ranging from 142.28 to 209.73 ppm), while little toxicity was exerted by BU fractions. A significant effect of the production site and dosage was also found and is probably linked to differences in abundance of constituents among samples, as highlighted by HPTLC analyses. NSOs and EAs were also able to deter A. albopictus oviposition in the field (effective repellence values ranging from 98.55 to 70.10 %), while little effectiveness of BU fractions was found. Concerning ovideterrent activity, no difference due to the production site was found. This is the first report concerning larvicidal toxicity of NSO against A. albopictus and ovideterrence against Culicidae in the field. The chance to use chemicals from the NSO EA fraction seems promising, since they are effective at lower doses, if compared to synthetic products currently marketed, and could be an advantageous alternative to build newer and safer mosquito control tools.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abdel-Ghaffar F, Al-Quraishy S, Sobhy H, Semmler M (2008) Neem seed extract shampoo, Wash Away Louse®, an effective plant agent against Sarcoptes scabiei mite infesting dogs in Egypt. Parasitol Res 104:145–148

    PubMed  Article  Google Scholar 

  • Abdel-Ghaffar F, Semmler M, Al-Rasheid KAS, Mehlhorn H (2009) In vitro efficacy of ByeMite® and Mite-Stop® on developmental stages of the red chicken mite Dermanyssus gallinae. Parasitol Res 105:469–471

    Article  Google Scholar 

  • Abdel-Ghaffar F, Al-Quraishy S, Al-Rasheid KAS, Mehlhorn H (2012) Efficacy of a single treatment of head lice with a neem seed extract: an in vivo and in vitro study on nits and motile stages. Parasitol Res 110:277–280

    PubMed  Article  Google Scholar 

  • Al-Quraishy S, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn J, Mehlhorn H (2011) Effects of a neem seed extract (MiteStop®) on mallophages (featherlings) of chicken: in-vivo and in-vitro studies. Parasitol Res 110:617–622

    PubMed  Article  Google Scholar 

  • Al-Quraishy S, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn J, Mehlhorn H (2012) Observations on effects of a neem seed extract (MiteStop®) on biting lice (mallophages) and bloodsucking insects parasitizing horses. Parasitol Res 110:335–339

    PubMed  Article  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    PubMed  Article  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    PubMed  Article  Google Scholar 

  • AOAC (2005) Official methods of analysis of AOAC International, 18th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Batra CP, Mittal PK, Adak T, Sharma VP (1998) Efficacy of neem oil-water emulsion against mosquito immatures. Indian J Malariol 35:15–21

    CAS  PubMed  Google Scholar 

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Bor Zoon Dis 7:76–85

    Article  Google Scholar 

  • Benelli G, Flamini G, Canale A, Cioni PL, Conti B (2012a) Toxicity evaluation of different essential oil formulations against the Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) (Diptera Tephritidae). Crop Prot 42:223–229

    CAS  Article  Google Scholar 

  • Benelli G, Flamini G, Canale A, Molfetta I, Cioni PL, Conti B (2012b) Repellence of Hyptis suaveolens L. (Lamiaceae) whole essential oil and major constituents against adults of the granary weevil Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). Bull Insectol 65:177–183

    Google Scholar 

  • Benelli G, Canale A, Flamini G, Cioni PL, Demi F, Ceccarini L, Macchia M, Conti B (2013a) Biotoxicity of Melaleuca alternifolia (Myrtaceae) essential oil against the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), and its parasitoid Psyttalia concolor (Hymenoptera: Braconidae). Ind Crop Prod 50:596–603

    CAS  Article  Google Scholar 

  • Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013b) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161

    PubMed  Article  Google Scholar 

  • Benelli G, Canale A, Conti B (2014a) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacol On Line 1:44–51

    Google Scholar 

  • Benelli G, Conti B, Garreffa R, Nicoletti M (2014b) Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 113:933–940

    PubMed  Article  Google Scholar 

  • Bowatte G, Perera P, Senevirathne G, Meegaskumbura S, Meegaskumbura M (2013) Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol Control 67:469–474

    Article  Google Scholar 

  • Caminade C, Medlock JM, Ducheyne E, McIntryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717

    PubMed Central  PubMed  Article  Google Scholar 

  • Canale A, Benelli G, Conti B, Lenzi G, Flamini G, Francini A, Cioni PL (2013) Ingestion toxicity of three Lamiaceae essential oils incorporated in protein baits against the olive fruit fly, Bactrocera oleae (Rossi) (Diptera Tephritidae). Nat Prod Res 22:2091–2099

    Article  Google Scholar 

  • Cheah SX, Tay JW, Chan LK, Jaal Z (2013) Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 112:3275–3282

    PubMed  Article  Google Scholar 

  • Chinese Pharmacopoeia (2009) TLC Atlas of Chinese Crude Drugs in Pharmacopoeia of the People’s Republic of China Commission. People’s Medical Publishing House, Beijing

  • Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2012a) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 110:2013–2021

    PubMed  Article  Google Scholar 

  • Conti B, Benelli G, Leonardi M, Afifi UF, Cervelli C, Profeti R, Pistelli L, Canale A (2012b) Repellent effect of Salvia dorisiana, S. longifolia and S. sclarea (Lamiaceae) essential oils against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 111:291–299

    PubMed  Article  Google Scholar 

  • Conti B, Leonardi M, Pistelli L, Profeti R, Ouerghemmi I, Benelli G (2013) Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res 112:991–999

    PubMed  Article  Google Scholar 

  • Conti B, Flamini G, Cioni PL, Ceccarini L, Macchia M, Benelli G (2014) Mosquitocidal essential oils: are they safe against non-target aquatic organisms? Parasitol Res 113:251–259

    PubMed  Article  Google Scholar 

  • Coria C, Almiron W, Valladares G, Carpinella C, Luduena F, Defago M, Palacios S (2008) Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.) (Diptera: Culicidae). Bioresour Technol 99:3066–3070

    CAS  PubMed  Article  Google Scholar 

  • Dua VK, Pandey AC, Raghavendra K, Gupta A, Sharma T, Dash A (2009) Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes. Malar J 8:124

    PubMed Central  PubMed  Article  Google Scholar 

  • Egho EO (2012) Seeds of neem tree (Azadirachta indica A. Juss). Promising biopesticide in the management of cowpea insect pests and grain yield in the early cropping season at Asaba and Abraka, Delta State, Nigeria. J Agric Sci 4:181–189

    Google Scholar 

  • Elango G, Bagavan A, Kamaraj C, Abduz Zahir A (2009) Abdul Rahuman A (2009) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105:1567–1576

    CAS  PubMed  Article  Google Scholar 

  • Elango G, Rahuman AA, Kamaraj C, Bagavan A, Zahir AA (2011) Efficacy of medicinal plant extracts against malarial vector, Anopheles subpictus Grassi. Parasitol Res 108:1437–1445

    PubMed  Article  Google Scholar 

  • Gallo FR, Multari G, Federici E, Palazzino G, Giambenedetti M, Petitto V, Poli F, Nicoletti M (2011) Chemical fingerprinting of Equisetum arvense L. using HPTLC densitometry and HPLC. Nat Prod Res 25:1261–1270

    CAS  PubMed  Article  Google Scholar 

  • Gallo FR, Multari G, Federici E, Palazzino G, Nicoletti M, Petitto V (2012) The modern analytical determination of Botanicals and similar novel natural products by the HPTLC fingerprint approach. In: Atta-Ur-Rahman (ed) Studies in Natural Products Chemistry, vol 37. Elsevier, Amsterdam, pp 217–258

  • Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, Tzakou O, Michaelakis A (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1113–1123

    PubMed  Article  Google Scholar 

  • Gleiser RM, Bonino MA, Zygadlo JA (2011) Repellence of essential oils of aromatic plants growing in Argentina against Aedes aegypti. Parasitol Res 108:69–78

    PubMed  Article  Google Scholar 

  • Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620

    PubMed  Article  Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367

    CAS  PubMed  Article  Google Scholar 

  • Hafeez F, Akram W, Shaalan EA (2011) Mosquito larvicidal activity of citrus limonoids against Aedes albopictus. Parasitol Res 109:221–229

    PubMed  Article  Google Scholar 

  • Hashmat I, Azad H, Ahmed A (2012) A Nature’s drugstore: a review. J. J Res J Biol Sci 1:76–79

    Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    CAS  PubMed  Article  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    CAS  PubMed  Article  Google Scholar 

  • Kempraj V, Bhat SK (2011) Acute and reproductive toxicity of Annona squamosa to Aedes albopictus. Pestic Biochem Physiol 100:82–86

    CAS  Article  Google Scholar 

  • Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou O (2010) Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol Res 107:327–335

    PubMed  Article  Google Scholar 

  • Koul O, Isman MB, Ketkar CM (1990) Properties and uses of Neem (Azadirachta indica). Can J Bot 68:1–11

    CAS  Article  Google Scholar 

  • Kramer WL, Mulla S (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111–1117

    Google Scholar 

  • Locher N, Al-Rasheid KAS, Abdel-Ghaffar F, Mehlhorn H (2010) In vitro and field studies on the contact and fumigant toxicity of a neem-product (Mite-Stop®) against the developmental stages of the poultry red mite Dermanyssus gallinae. Parasitol Res 107:417–423

    PubMed  Article  Google Scholar 

  • Maheswaran R, Ignacimuthu S (2012) A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 110:1801–1813

    PubMed  Article  Google Scholar 

  • Marini-Bettolo GB, Nicoletti M, Patamia M, Galeffi C, Messana I (1981) Plant screening by chemical and chromatographic procedure under field conditions. J Chromatogr 213:113–120

    CAS  Article  Google Scholar 

  • Mehlhorn H, Walldorf V, Abdel-Ghaffar F, Al-Quraishy S, Al-Rasheid KAS, Mehlhorn J (2012) Biting and bloodsucking lice of dogs—treatment by means of a neem seed extract (MiteStop®, Wash Away Dog). Parasitol Res 110:769–773

    PubMed  Article  Google Scholar 

  • National Research Council (1992) Neem: a tree for solving global problems. In: Report of an ad hoc panel of the Board on Science and Technology for International Development. National Academy Press, Washington

    Google Scholar 

  • Nicoletti M (2011) HPTLC fingerprint: a modern approach for the analytical determination of botanicals. Brazil J Pharmacogn 21:818–823

    CAS  Google Scholar 

  • Nicoletti M, Serafini M, Aliboni A, D’Andrea A, Mariani S (2010) Toxic effects of neem cake extracts on Aedes albopictus larvae. Parasitol Res 107:89–84

    PubMed  Article  Google Scholar 

  • Nicoletti M, Mariani S, Maccioni O, Coccioletti T, Murugan K (2012) Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito. Parasitol Res 111:205–2013

    PubMed  Article  Google Scholar 

  • Nicoletti M, Murugan K, Del Serrone P (2014) Current mosquito-borne diseases emergencies in Italy and climate changes. The neem opportunity. Tr Vect Res Parassitol. doi:10.7243/2054-9881-1-2

    Google Scholar 

  • Noudjou F, Kouninki H, Ngamo LST, Maponmestsem PM, Ngassoum M, Hance T, Haubruge E, Malaisse F, Marlier M, Lognay GC (2007) Effect of site location and collecting period on the chemical composition of Hyptis spicigera Lam. an insecticidal essential oil from North-Cameroon. J Essent Oil Res 19:597–601

    CAS  Article  Google Scholar 

  • Okumu FO, Knols BGJ, Fillinger U (2007) Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J 6:63

    PubMed Central  PubMed  Article  Google Scholar 

  • Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692

    PubMed  Article  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111:2241–2251

    PubMed  Article  Google Scholar 

  • Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microb Infect 11:1177–1185

    CAS  Article  Google Scholar 

  • Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heaney AJ, McGimpsey JA, Smallfield BM (1999) Essential oils from Dalmatian sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. J Agric Food Chem 47:2048–2054

    CAS  PubMed  Article  Google Scholar 

  • Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 23:208–212

    CAS  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2005) Repellency of volatile oils from Moschosma polystachyum and Solanum xanthocarpum against filarial vector Culex quinquefasciatus Say. Trop Biomed 22:139–142

    CAS  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104:337–340

    CAS  PubMed  Article  Google Scholar 

  • Ram M, Abdin MZ, Khan MA, Prabhakar J (2011) HPTLC fingerprint analysis: a quality control for authentication of herbal phytochemicals in high-performance thin-layer chromatography (HPTLC). Springer-Verlag, Berlin

    Google Scholar 

  • Rao DR, Reuben R, Venugopal MS, Nagasampagi BA, Schmutterer H (1992) Evaluation of neem, Azadirachta indica, with and without water management, for the control of culicine mosquito larvae in rice-fields. Med Vet Entomol 6:318–324

    CAS  PubMed  Article  Google Scholar 

  • Reich E, Schibli A (2007) A high-performance thin-layer chromatography for analysis of medicinal plants. Thieme Medical Publishers, New York

    Google Scholar 

  • Richter P (2001) Climate changes and mosquito-borne diseases. Environ Health Perspect 109:161–171

    Article  Google Scholar 

  • Santos-Gomes PC, Fernandes-Ferreira M (2001) Organ- and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. J Agric Food Chem 49:2908–2916

    CAS  PubMed  Article  Google Scholar 

  • Schmahl G, Al-Rasheid KAS, Abdel-Ghaffar F, Klimpel S, Mehlhorn H (2010) The efficacy of neem seed extracts (Tresan®, MiteStop®) on a broad spectrum of pests and parasites. Parasitol Res 107:261–269

    PubMed  Article  Google Scholar 

  • Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2010) Nature helps: from research to products against blood sucking parasites. Parasitol Res 105:1483–1487

    Article  Google Scholar 

  • Sharma VP, Dhiman RC (1993) Neem oil as a sand fly (Diptera: Psychodidae) repellent. J Am Mosq Control Assoc 9:364–366

    CAS  PubMed  Google Scholar 

  • Su T, Mulla MS (1998a) Antifeedancy of neem products containing Azadirachtin against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Vector Ecol 23:114–122

    CAS  PubMed  Google Scholar 

  • Su T, Mulla MS (1998b) Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera; Culicidae). J Am Mosq Control Assoc 14:204–209

    CAS  PubMed  Google Scholar 

  • Tchoumbougang F, Amvam Zollo PH, Fecam Boyom F, Nyegue MA, Bessière JM (2005) Aromatic plants of Tropical Central Africa. XLVIII. Comparative study of the essential oils of four Hyptis species from Cameroon: H. lanceolata Poit., H. pectinata (L.) Poit., H. spicigera Lam. and H. suaveolens Poit. Flavour Fragr J 20:340–343

    Article  Google Scholar 

  • Walldorf V, Mehlhorn H, Al-Quraishy S, Al-Rasheid KAS, Abdel-Ghaffar F, Mehlhorn J (2012) Treatment with a neem seed extract (MiteStop®) of beetle larvae parasitizing the plumage of poultry. Parasitol Res 110:623–627

    PubMed  Article  Google Scholar 

  • WHO (2000) General guidelines for methodologies on research and evaluation of traditional medicine. World Health Organization, Geneva

    Google Scholar 

  • WHO (2009) Guidelines for efficacy testing of mosquito repellents for human skin. WHO/HTM/NTD/WHOPES/2009.4. Control of neglected tropical diseases. World Health Organization, Geneva

    Google Scholar 

  • Xue RD, Barnard DR, Ali A (2001) Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Med Vet Entomol 15:126–131

    CAS  PubMed  Article  Google Scholar 

  • Yamany AS, Mehlhorn H, Adham FK (2012) Yolk protein uptake in the oocyte of the Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae). Parasitol Res 111:1315–1324

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the neem oil producers for providing samples for this research. We are grateful to Susanna Mariani and Paola del Serrone for helpful discussion on bioactivity and chemical characterization of neem oils and fractions. G. Benelli is supported by a MIS. 124 MODOLIVI Grant. Funds were also provided by the Italian Ministry of Education, University and Research (MIUR). Funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The mention of commercial neem-based products did not constitute and endorsement by the authors and their institutions.

Conflict of interest

The authors did not have potential conflict of interests relevant to the subject of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanni Benelli or Barbara Conti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benelli, G., Bedini, S., Cosci, F. et al. Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114, 227–236 (2015). https://doi.org/10.1007/s00436-014-4183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4183-3

Keywords

  • Arbovirus vector
  • Asian tiger mosquito
  • Botanical by-products
  • Azadirachta indica
  • HPTLC
  • Meliaceae
  • Plant-born mosquitocidals