Parasitology Research

, Volume 114, Issue 1, pp 101–112 | Cite as

Trichomonas gypaetinii n. sp., a new trichomonad from the upper gastrointestinal tract of scavenging birds of prey

  • Rafael Alberto Martínez-Díaz
  • Francisco Ponce-Gordo
  • Irene Rodríguez-Arce
  • María Carmen del Martínez-Herrero
  • Fernando González González
  • Rafael Ángel Molina-López
  • María Teresa Gómez-Muñoz
Original Paper

Abstract

In the context of an epidemiological study carried out by several wildlife recovery centers in Spain, trichomonads resembling Trichomonas gallinae were found in the oropharyngeal cavity of 2 Egyptian vultures (Neophron percnopterus) and 14 cinereous vultures (Aegypius monachus) which did not show any symptoms of trichomonosis. In order to characterize them, these isolates along with seven other T. gallinae isolates obtained from different hosts and from different geographical origin were analyzed. Genetic analyses were performed by sequencing the small subunit ribosomal RNA (SSU-rRNA) and the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA regions. The morphological study of the isolates in both light and scanning electron microscopy was also performed. The sequences obtained in the genetic analysis coincide with previously published sequences of an isolate named as Trichomonas sp., obtained from a bearded vulture (Gypaetus barbatus), and showed clear differences to the T. gallinae sequences (97 and 90–91 % homology, respectively, for SSU-rRNA and ITS regions) and display higher similarity with Trichomonas vaginalis and Trichomonas stableri than with T. gallinae. Multivariate statistical analysis of the morphometric study also reveals significant differences between the trichomonads of vultures and the isolates of T. gallinae. The isolates from vultures presented smaller values for each variable except for the length of axostyle projection, which was higher. These results together with the different nature of their hosts suggest the possibility of a new species of trichomonad which we hereby name Trichomonas gypaetinii, whose main host are birds of the subfamily Gypaetinae.

Keywords

Trichomonas SSU-rRNA and ITS genotypes Morphology Vultures Host range New species 

Supplementary material

436_2014_4165_MOESM1_ESM.pdf (95 kb)
Online Resource 1(PDF 94 kb)
436_2014_4165_MOESM2_ESM.pdf (75 kb)
Online Resource 2(PDF 75 kb)
436_2014_4165_MOESM3_ESM.pdf (60 kb)
Online Resource 3(PDF 59 kb)
436_2014_4165_MOESM4_ESM.pdf (17 kb)
Online Resource 4(PDF 16 kb)

References

  1. Amin A, Neubauer C, Liebhart D, Grabensteiner E, Hess M (2010) Axenization and optimization of in vitro growth of clonal cultures of Tetratrichomonas gallinarum and Trichomonas gallinae. Exp Parasitol 124:202–208PubMedCrossRefGoogle Scholar
  2. Amin A, Bilic I, Liebhart D, Hess M (2014) Trichomonads in birds—a review. Parasitology 141:733–747PubMedCrossRefGoogle Scholar
  3. Amos WB, Grimstone AV, Rothschild LJ, Allen RD (1979) Structure, protein composition and birefringence of the root fiber in the flagellate Trichomonas. J Cell Sci 35:139–164PubMedGoogle Scholar
  4. Anderson NL, Grahn RA, Van Hoosear K, Bondurant RH (2009) Studies of trichomonad protozoa in free ranging songbirds: Prevalence of Trichomonas gallinae in house finches (Carpodacus mexicanus) and corvids and a novel trichomonad in ockingbirds (Mimus polyglottos). Vet Parasitol 161:178–186PubMedCrossRefGoogle Scholar
  5. Anthony RG, Estes JA, Ricca MA, Miles AK, Forsman ED (2008) Bald eagles and sea otters in the Aleutian Archipelago: Indirect effects of trophic cascades. Ecology 89:2725–2735PubMedCrossRefGoogle Scholar
  6. Brugerolle G (1976) Cytologie ultrastructurale, systematique et evolution des Trichomonadida. Ann Stn Biol Besse-en− Chandesse 10:1–57Google Scholar
  7. Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354PubMedGoogle Scholar
  8. Cavalier-Smith T (2003) The excavate protozoan phyla Metamonada Grasse’ emend. (Anaeromonada, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa. Int J Syst Evol Microbiol 53:1741–1758PubMedCrossRefGoogle Scholar
  9. Cepicka I, Hampl V, Kulda K (2010) Critical taxonomic revision of Parabasalids with description of one new genus and three new species. Protist 161:400–433PubMedCrossRefGoogle Scholar
  10. Chi JF, Lawson B, Durrant C, Beckmann K, John S, Alrefaei AF, Kirkbride K, Bell DJ, Cunningham AA, Tyler KM (2013) The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitology 140:1234–1245PubMedCrossRefGoogle Scholar
  11. Del Hoyo J, Elliott A, Sargatal J (1994) Handbook of the Birds of the World, vol 2. New World Vultures to Guineafowl, Lynx, BarcelonaGoogle Scholar
  12. Ecco R, Preis IS, Vilela DAR, Luppi MM, Malta MCC, Beckstead RB, Stimmelmayer R, Gerhold RW (2012) Molecular confirmation of Trichomonas gallinae and other parabasalids from Brazil using the 5.8S and ITS-1 rRNA regions. Vet Parasitol 190:36–42PubMedCrossRefGoogle Scholar
  13. Felleisen RS (1997) Comparative sequence analysis of 5.8S rRNA genes and internal transcribed spacer (ITS) regions of trichomonadid protozoa. Parasitology 115:111–119PubMedCrossRefGoogle Scholar
  14. Forrester DJ, Foster GW (2008) Trichomonosis. In: Atkinson CT, Thomas NJ, Hunter DB (eds) Parasitic diseases of wild birds. Wiley-Blackwell, Ames, pp 120–153Google Scholar
  15. Ganas P, Jaskulska B, Lawson B, Zadravec M, Hess M, Bilic I (2014) Multi-locus sequence typing confirms the clonality of Trichomonas gallinae isolates circulating in European finches. Parasitology 141:652–661PubMedCrossRefGoogle Scholar
  16. Gaspar da Silva D, Barton E, Bunbury N, Lunness P, Bell DJ, Tyler KM (2007) Molecular identity and heterogeneity of trichomonad parasites in a closed avian population. Infect Genet Evol 7:433–440PubMedCrossRefGoogle Scholar
  17. Gerhold RW, Yabsley MJ, Smith AJ, Ostergaard E, Mannan W, Cann JD, Fischer JR (2008) Molecular characterization of the Trichomonas gallinae morphologic complex in the United States. J Parasitol 94:1335–1341PubMedCrossRefGoogle Scholar
  18. Girard YA, Rogers KH, Gerhold R, Land KM, Lenaghan SC, Woods LW, Haberkern N, Hopper M, Cann JD, Johnson CK (2014a) Trichomonas stableri n. sp., an agent of trichomonosis ion Pacific Coast band-tailed pigeons (Patagioenas fasciata monilis. Int J Parasitol Parasites Wild1 3:32–40CrossRefGoogle Scholar
  19. Girard YA, Rogers KH, Woods LW, Chouicha N, Miller WA, Johnson CK (2014b) Dual pathogen etiology of avian trichomonosis in a declining band-tailed pigeon population. Infect Genet Evol 24:146–156PubMedCrossRefGoogle Scholar
  20. Grabensteiner E, Bilic I, Kolbe T, Hess M (2010) Molecular analysis of clonal trichomonad isolates indicate the existence of heterogenic species present in different birds and within the same host. Vet Parasitol 172:53–64PubMedCrossRefGoogle Scholar
  21. Grubb TG, Lopez RG (2000) Food habits of bald eagles wintering in Northern Arizona. J Raptor Res 34:287–292Google Scholar
  22. Guzmán J, Jiménez J (1998) Alimentación del Buitre Negro (Aegypius monachus) durante los períodos reproductor y post-reproductor en el Parque Nacional de Cabañeros. In: Chancellor RD, Meyburg BU, Ferrero JJ (eds) Holarctic birds of prey. ADENEX & WWGBP, Mérida & Berlin, pp 215–221Google Scholar
  23. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenomic analyse support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hayes DC, Anderson RR, Walker RL (2003) Identification of trichomonadid protozoa from the bovine preputial cavity by polymerase chain reaction and restriction fragment length polymorphism typing. J Vet Diagn Invest 15:390–394PubMedCrossRefGoogle Scholar
  25. Kelly-Clark WK, McBurney S, Forzán MJ, Desmarchelier M, Greenwood SJ (2013) Detection and characterization of a Trichomonas isolate from a rehabilitated bald eagle (Haliaeetus leucocephalus). J Zoo Wildl Med 44:1123–1126PubMedCrossRefGoogle Scholar
  26. Kleina P, Bettim-Bandielli J, Bonatto SL, Benchimol M, Bogo MR (2004) Molecular phylogeny of Trichomonadidae family inferred from ITS-1, 5.8S rRNA and ITS-2 sequences. Int J Parasitol 34:963–970PubMedCrossRefGoogle Scholar
  27. Kulda J (1999) Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol 29:199–212PubMedCrossRefGoogle Scholar
  28. Lawson B, Cunningham AA, Chantrey J, Hughes LA, John SK, Bunbury N, Bell DJ, Tyler KM (2011) A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infect Genet Evol 11:1638–1645PubMedCrossRefGoogle Scholar
  29. Malik SB, Brochu CD, Bilic I, Yuan J, Hess M, Logsdon JM Jr, Carlton JM (2011) Phylogeny of parasitic Parabasalia and free-living relatives inferred from conventional markers vs. Rpb1, a single-copy gene. PLoS One 6(6):e20774PubMedCentralPubMedCrossRefGoogle Scholar
  30. Melhorn H, Al-Quraishy S, Aziza A, Hess M (2009) Fine structure of the bird parasites Trichomonas gallinae and Tetratrichomonas gallinarum from cultures. Parasitol Res 105:751–756CrossRefGoogle Scholar
  31. Mostegl MM, Richter B, Nedorost N, Maderner A, Dinhopl N, Kübber-Heiss A, Weissenböck H (2012) Identification of a putatively novel trichomonad species in the intestine of a common quail (Coturnix coturnix). Vet Parasitol 183:369–372PubMedCentralPubMedCrossRefGoogle Scholar
  32. Munsch M, Mehlhorn H, Al-Quraishy S, Lotfi AR, Hafez HM (2009) Molecular biological features of strains of Histomonas meleagridis. Parasitol Res 104:1137–1140PubMedCrossRefGoogle Scholar
  33. Poirier TP, Holt SC, Honigberg BM (1990) Fine structure of the mastigont system in Trichomonas tenax (Zoomastigophorea: Trichomonadida). Trans Am Microsc Soc 109:342–351CrossRefGoogle Scholar
  34. Robinson RA, Lawson B, Toms MP, Peck KM, Kirkwood JK, Chantrey J, Clatworthy IR, Evans AD, Hughes LA, Hutchinson OC, John SK, Pennycott TW, Perkins MW, Rowley PS, Simpson VR, Tyler KM, Cunningham AA (2010) Emerging infectious disease leads to rapid population declines of common British birds. PLoS One 5(8):e12215PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sansano-Maestre J, Garijo-Toledo MM, Gomez-Muñoz MT (2009) Prevalence and genotyping of Trichomonas gallinae in pigeons and birds of prey. Avian Pathol 38:201–207PubMedCrossRefGoogle Scholar
  36. Seddiek SA, El-Shorbagy MM, Khater HF, Ali AM (2014) The antitrichomonal efficacy of garlic and metronidazole against Trichomonas gallinae infecting domestic pigeons. Parasitol Res 113:1319–1329PubMedCrossRefGoogle Scholar
  37. Simpson AGB, Inagaki Y, Roger AJ (2006) Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Mol Biol Evol 23:615–625PubMedCrossRefGoogle Scholar
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralPubMedCrossRefGoogle Scholar
  39. Tasca T, De Carli GA (2003) Scanning electron microscopy study of Trichomonas gallinae. Vet Parasitol 118:37–42PubMedCrossRefGoogle Scholar
  40. Walker RL, Hayes DC, Sawyer RW, Nordhausen RW, Van Hoosear KA, BonDurant RH (2003) Comparison of the 5.8SrRNA gene and internal transcribed spacer regions of trichomonadid protozoa recovered from the bovine preputial cavity. J Vet Diagn Invest 15:14–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rafael Alberto Martínez-Díaz
    • 1
  • Francisco Ponce-Gordo
    • 2
  • Irene Rodríguez-Arce
    • 1
  • María Carmen del Martínez-Herrero
    • 3
  • Fernando González González
    • 4
  • Rafael Ángel Molina-López
    • 5
  • María Teresa Gómez-Muñoz
    • 6
  1. 1.Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
  2. 2.Departamento de Parasitología, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  3. 3.Departamento de Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos. Facultad de VeterinariaUniversidad CEU Cardenal-Herrera, Instituto de Ciencias BiomédicasAlfara del PatriarcaSpain
  4. 4.GREFA (Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat)MajadahondaSpain
  5. 5.Centre de Fauna Salvatge de Torreferrussa, Catalan Wildlife-Service, Forestal CatalanaSanta Perpètua de la MogodaBarcelonaSpain
  6. 6.Departamento de Sanidad Animal, Facultad de VeterinariaUniversidad Complutense de MadridMadridSpain

Personalised recommendations