Advertisement

Parasitology Research

, Volume 113, Issue 12, pp 4491–4498 | Cite as

Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota

  • Daniele Corsaro
  • Julia Walochnik
  • Danielle Venditti
  • Karl-Dieter Müller
  • Bärbel Hauröder
  • Rolf Michel
Original Paper

Abstract

Recent studies showed that the huge diversity branching at or near the phylogenetic root of the fungal kingdom, mostly constituted by uncultured environmental clones, is actually characterized by intracellular predators/parasites of various eukaryotes. These form three related lineages: the Aphelidea, endoparasites of algae; the Rozellomycota, with Rozella species mainly endoparasites of water moulds, and Paramicrosporidium species endonuclear parasites of amoebae; and the Microsporidia, mainly endoparasites of animals. Increasing evidence suggests the emergence of Microsporidia from within Rozellomycota; however, their fungal or protistan nature is still unclear. Here, we report the molecular phylogeny based on the small subunit ribosomal RNA (SSU rDNA) gene, of an additional endoparasite of amoebae, corresponding to the old enigmatic chytrid Nucleophaga amoebae described in the nineteenth century. Our results show that Nucleophaga, possessing a morphotype intermediate between Rozella and Paramicrosporidium, emerges as a unique lineage within the Rozellomycota. The recovery and characterization of new members of Rozellomycota are of high value for the understanding of the early evolutionary history of the Fungi and related lineages.

Keywords

Rozellomycota Nucleophaga Chytrids Amoebae Endoparasite 

Notes

Acknowledgments

We thank R. Kurek for the assistance and previous microscopy data. This study was supported by internal fundings of each laboratory.

Supplementary material

436_2014_4138_MOESM1_ESM.pdf (210 kb)
Supplementary Figure 1 Maximum-Likelihood 18S rDNA tree of Fungi, other opisthokonts (Animalia and Choanozoa), Apusozoa and Amoebozoa, the latter used as root. Full tree topology is shown for the Rozellomycota, to demonstrate the relative position of the three cultured genus-level taxa (in bold) identified in this group. Other major groups are collapsed (see Suppl. Table 1). Branchs are shortened to 1/2 (Thecamonas, Dictyostelium) or 1/3 (Entamoeba). Bootstrap values >50 % are indicated (1000 replicates). (PDF 209 kb)
436_2014_4138_MOESM2_ESM.xls (35 kb)
Supplementary Table 1 List of taxon names and GenBank accession numbers used in this study. (XLS 35 kb)

References

  1. Anderson SA, Stewart A, Tolich Allen G (1995) Pseudosphaerita euglenae, a fungal parasite of Euglena spp. in the Mangere Oxidation Ponds, Auckland, New Zealand. N Z J Mar Freshw Res 29:371–379CrossRefGoogle Scholar
  2. Atsatt PR, Whiteside MD (2014) Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the Plant Kingdom. PLoS ONE 9:e95266PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brumpt E, Lavier G (1935) Sur une nucléophaga parasite d’Endolimax nana. Ann Parasitol Hum Comp 13:439–444Google Scholar
  4. Cavalier-Smith T (1987) The origin of fungi and pseudofungi. In: Rayner ADM, Braiser CM, Moore D (eds) Evolutionary biology of Fungi. Cambridge University Press, Cambridge, pp 339–353Google Scholar
  5. Cavalier-Smith T (2013) Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 49:115–178PubMedCrossRefGoogle Scholar
  6. Corradi N, Keeling PJ (2014) Ecological genomics of the microsporidia. In: Martin F (ed) The ecological genomics of fungi. John Wiley & Sons, Inc, pp 261–278Google Scholar
  7. Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller K-H, Michel R (2014) Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol Res 113:1909–1918PubMedCrossRefGoogle Scholar
  8. Dangeard P-A (1895) Mémoire sur les parasites du noyau et du protoplasme. Le Botaniste 4:199–248Google Scholar
  9. Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur J Phycol 44:509–514CrossRefGoogle Scholar
  10. Held AA (1981) Rozella and Rozellopsis: naked endoparasitic fungi which dress-up as their hosts. Bot Rev 47:451–515CrossRefGoogle Scholar
  11. Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S (2008) Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota) parasitic on the green alga Haematococcus. Mycol Res 111:70–81CrossRefGoogle Scholar
  12. James TY, Berbee ML (2012) No jacket required—new fungal lineage defies dress code: recently described zoosporic fungi lack a cell wall during trophic phase. Bioessays 34:94–102PubMedCrossRefGoogle Scholar
  13. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  14. James TY, Pelin A, Bonen L, Ahrendt S, Sain S, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23:1548–1553PubMedCrossRefGoogle Scholar
  15. Johnson PTJ, Longcore JE, Stanton DE, Carnegie RB, Shields JD, Preu ER (2006) Chytrid infections of Daphnia pulicaria: development, ecology, pathology and phylogeny of Polycaryum laeve. Freshw Biol 51:634–648CrossRefGoogle Scholar
  16. Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203PubMedCrossRefGoogle Scholar
  17. Karling JS (1972) The present status of Sphaerita, Pseudosphaerita, Morella and Nucleophaga. Bull Torrey Bot Club 99:223–228CrossRefGoogle Scholar
  18. Karpov SA, Mikhailov KV, Mirzaeva GS, Mirabdullaev IM, Mamkaeva KA, Titova NN, Aleoshin VV (2013) Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164:195–205PubMedCrossRefGoogle Scholar
  19. Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH (2014a) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:112PubMedCentralPubMedGoogle Scholar
  20. Karpov SA, Mamkaeva MA, Benzerara K, Moreira D, López-García P (2014b) Molecular phylogeny and ultrastructure of Aphelidium aff. melosirae (Aphelida, Opisthosporidia). Protist 165:512–526PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kirby H (1927) Studies on some amoebae from the termite Mirotermes, with notes on some other Protozoa from the Termitidae. Q J Microsc Soc 71:189–222Google Scholar
  22. Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of Fungi. Protist 161:116–121PubMedCrossRefGoogle Scholar
  23. Lavier G (1935) Sur une Nucleophaga parasite d'Entamoeba ranarum. Ann Parasitol Hum Comp 13:351–361Google Scholar
  24. Letcher PM, Lopez S, Schmieder R, Lee PA, Behnke C, Powell MJ, McBride RC (2013) Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel. PLoS ONE 8:e56232PubMedCentralPubMedCrossRefGoogle Scholar
  25. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71:491–499PubMedCrossRefGoogle Scholar
  26. Mercier L (1910) Contribution à 1'étude de l'amibe de la blatte (Entamoeba blattae Bütschli). Arch Protistenkd 20:143–175Google Scholar
  27. Michel R, Schmid EN, Böker T, Hager DG, Müller K-D, Hoffmann R, Seitz HM (2000) Vannella sp. harboring Microsporidia-like organisms isolated from the contact lens and inflamed eye of a female keratitis patient. Parasitol Res 86:514–520PubMedCrossRefGoogle Scholar
  28. Michel R, Müller K-D, Hauröder B (2009a) A novel microsporidian endoparasite replicating within the nucleus of Saccamoeba limax isolated from a pond. Endocytobios Cell Res 19:120–126Google Scholar
  29. Michel R, Hauröder B, Zöller L (2009b) Isolation of the amoeba Thecamoeba quadrilineata harbouring intranuclear spore forming endoparasites considered as fungus-like organisms. Acta Protozool 48:41–49Google Scholar
  30. Palenzuela O, Redondo MJ, Cali A, Takvorian PM, Alonso-Naveiro M, Alvarez-Pellitero P, Sitjà-Bobadilla A (2014) A new intranuclear microsporidium, Enterospora nucleophila n. sp., causing an emaciative syndrome in a piscine host (Sparus aurata), prompts the redescription of the family Enterocytozoonidae. Int J Parasitol 44:189–203PubMedCrossRefGoogle Scholar
  31. Powell MJ (1981) Zoospore structure of the mycoparasitic chytrid Caulochytrium protostelioides Olive. Am J Bot 68:1074–1089CrossRefGoogle Scholar
  32. Powell MJ (1984) Fine structure of the unwalled thallus of Rozella polyphagi in its host Polyphagus euglenae. Mycologia 76:1039–1048CrossRefGoogle Scholar
  33. Sebé-Pedrós A, Burkhardt P, Sánchez-Pons N, Fairclough SR, Lang BF, King N, Ruiz-Trillo I (2013) Insights into the origin of metazoan filopodia and microvilli. Mol Biol Evol 30:2013–2023PubMedCentralPubMedCrossRefGoogle Scholar
  34. Sparrow FK Jr (1960) Aquatic phycomycetes, 2nd edn. The University of Michigan Press, Ann ArborGoogle Scholar
  35. Upton SJ, Brillhart DB, McAllister CT (1991) Two morphologically distinct types of Giardia sp. occur in cotton rats, Sigmodon hispidus. Tex J Sci 43:373–376Google Scholar
  36. Voge M, Kessel JF (1958) Sphaerita in cysts of Entamoeba coli. J Parasitol 44:454–455PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniele Corsaro
    • 1
  • Julia Walochnik
    • 2
  • Danielle Venditti
    • 1
    • 3
  • Karl-Dieter Müller
    • 4
  • Bärbel Hauröder
    • 5
  • Rolf Michel
    • 5
  1. 1.CHLAREAS Chlamydia Research AssociationVandoeuvre-lès-NancyFrance
  2. 2.Molecular Parasitology, Institute of Specific Prophylaxis and Tropical MedicineMedical University of ViennaViennaAustria
  3. 3.Tredi Research Department, Faculty of MedecineTechnopôle de Nancy-BraboisVandœuvre-lès-NancyFrance
  4. 4.Institut of Medical MicrobiologyUniversity of Duisburg-EssenEssenGermany
  5. 5.Central Institute of the Federal Armed Forces Medical ServicesKoblenzGermany

Personalised recommendations