Skip to main content

Advertisement

Log in

Zanthoxylum caribaeum (Rutaceae) essential oil: chemical investigation and biological effects on Rhodnius prolixus nymph

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A chemical investigation and bioassays against fifth-instar nymphae of the hematophagous insect Rhodnius prolixus, vector of Chagas disease, were conducted with the essential oil from Zanthoxylum caribaeum. The main results may be summarized as follows: (i) 54 components were identified, corresponding to 90.4 % of the relative composition; sesquiterpenes (47.3 %) and monoterpenes (41.2 %) are the major constituents; (ii) muurola-4,5-trans-diene and isodaucene are described for the first time as chemical constituents of the essential oil from leaves of this species; (iii) topical treatment with the crude essential oil induced high levels of paralysis (from 18.88 to 33.33 %) and mortality (from 80 to 98.9 %) depending on the dose applied (0.5 to 5.0 μl per insect); (iv) feeding treatment with the crude essential oil also induced high levels of mortality (from 48.8 to 100 %) but low levels of paralysis (from 2.22 to 7.77 %) depending on the dose applied (0.5 to 5.0 μl/ml of blood); (v) in the continuous treatment, only the dose of 5.0 μl/cm2 was able to promote statistical significant levels of mortality (63.3 %) but no paralysis were detected. However in this group, occasionally, only few insects displayed malformations of legs and wings after treatment; and (vi) any treatment was able to disrupt the metamorphosis process since the low adult stage emergence observed to all groups was due the high insect mortality. These observations suggest the interference of Z. caribaeum compounds on the triatomine neuroendocrine system. The significance of these results in relation to the relevant biological events in R. prolixus as well as the possible use of insect growth regulators present in Z. caribaeum oil in integrated vector control programs against hematophagous triatomine species is herein discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing, Carol Stream

    Google Scholar 

  • Amaral RR, Fernandes CP, Caramel OP, Tietbohl LAC, Santos MG, Carvalho JCT, Rocha L (2013) Essential oils from fruits with different colors and leaves of Neomitranthes obscura (DC.) N. Silveira: an endemic species from Brazilian Atlantic Forest. BioMed Res Int, http://dx.doi.org/10.1155/2013/723181. Acessed 21 November 2012

  • Amer A, Mehlhorn H (2006a) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499

    Article  PubMed  Google Scholar 

  • Armitage P, Berry G, Matthews JNS (2002) Comparison of several groups and experimental design. In: Armitage P (ed) Statistical methods in medical research, 4th edn. Blackwell, Oxford, pp 208–256

    Chapter  Google Scholar 

  • Babu R, Murugan K (1998) Interactive effect of neem seed kernel and neem gum extract on the control of Culex quinquefasciatus Say. Neem Newsl 15:9–11

    Google Scholar 

  • Bagavan A, Rahuman A, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103:223–229

    Article  PubMed  CAS  Google Scholar 

  • Boehme AK, Noletto JA, Haber WA, Setzer WN (2008) Bioactivity and chemical composition of the leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum from Monteverde, Costa Rica. Nat Prod Res 22:31–36

    Article  PubMed  CAS  Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117

    Article  PubMed  CAS  Google Scholar 

  • Cestari IM, Sarti SJ, Waib CM, Branco AC (2004) Evaluation of the potential insecticide activity of Tagetes minuta (Asteraceae) essential oil against the head lice Pediculus humanus capitis (Phthiraptera : Pediculidae). Neotrop Entomol 33:805–807

    Article  Google Scholar 

  • Chagas C (1909) Nova tripanosomíase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., agente etiológico de nova entidade mórbida do homem. Mem Inst Oswaldo Cruz 1:159–218

    Article  Google Scholar 

  • Choi WI, Lee EH, Choi BR, Park HM, Ahn YI (2003) Toxicity of the plant essential oil to Trialeurodes vaporariorum (Homoptera : Aleyrodidae). J Econ Entomol 96:1479–1484

    Article  PubMed  CAS  Google Scholar 

  • Choochote W, Kanjanapothi BTD, Rattanachanpichai E, Chaithong U, Chaiwong P, Jitpakdi A, Tippawangkosol P, Riyong D, Pitasawat B (2004) Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.). J Vect Ecol 12:340–346

    Google Scholar 

  • Cortez MGR, Gonzalez MS, Cabral MMO, Garcia ES, Azambuja P (2002) Dynamic development of Trypanosoma cruzi in Rhodnius prolixus: role of decapitation and ecdysone therapy. Parasitol Res 88:697–703

    Article  PubMed  CAS  Google Scholar 

  • Coura JR (2005) Dinâmica das doenças infecciosas e parasitárias. Guanabara – Koogan, Rio de Janeiro

    Google Scholar 

  • Coura JR, Dias JCP (2009) Epidemiology, control and surveillance of Chagas disease—100 years after its discovery. Mem Inst Oswaldo Cruz 104:31–40

    PubMed  Google Scholar 

  • Dias E (1943) Estudos sobre o Schyzotrypanum cruzi. Mem Inst Oswaldo Cruz 28:1–110

    Google Scholar 

  • Fournet ARA, Charles B, Bruneton J (1996) Chemical constituents of essential oils of Muña, Bolivian plants traditionally used as pesticides, and their insecticidal properties against Chagas’ disease vectors. J Ethopharmacol 52:145–149

    Article  CAS  Google Scholar 

  • Garcia ES, Azambuja P (1991) Development and interactions of Trypanosoma cruzi within the insect vector. Parasitol Today 7:240–244

    Article  PubMed  CAS  Google Scholar 

  • Garcia ES, Azambuja P (2004) Lignoids in insects: chemical probes for study of ecdysis, excretion and Trypanosoma cruzi–triatomine interactions. Toxicon 44:431–440

    Article  PubMed  CAS  Google Scholar 

  • Garcia ES, Gonzalez MS, Azambuja P (1999) Biological factors involving Trypanosoma cruzi life cycle in the invertebrate host, Rhodnius prolixus. In: Simpósio Internacional sobre Avanços no conhecimento da Doença de Chagas, 90 anos após sua descoberta. Mem Inst Oswaldo Cruz 94:213–216

    Article  PubMed  Google Scholar 

  • Gonzalez MS, Nogueira NFS, Mello CB, de Souza W, Schaub GA, Azambuja P, Garcia ES (1999) Influence of brain on the midgut arrangement and Trypanosoma cruzi development in the vector, Rhodnius prolixus. Exp Parasitol 92:100–108

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MS, Nogueira NFS, de Souza W, Azambuja P, Garcia ES (2000) Influence of brain on the Trypanosoma cruzi development in Rhodnius prolixus. Mem Inst Oswaldo Cruz 95:58–59

    Article  Google Scholar 

  • Groppo M, Pirani JR, Salatino MLF, Blanco SR, Kallunki JA (2008) Phylogeny of Rutaceae based on two noncoding regions from cpDNA. Am J Bot 95:985–1005

    Article  PubMed  CAS  Google Scholar 

  • Guenter R (1972) The essential oils. Publishing Co, New York

    Google Scholar 

  • Hajjar N (1985) Chitin synthesis inhibitors as insecticides. In: Huston DH, Roberts TR (eds) Insecticides, 1st edn. John Wiley and Sons, New York, pp 275–310

    Google Scholar 

  • Halder J, Srivastava C, Dhingra S, Dureja P (2012) Effect of essential oils on feeding, survival, growth and development of third instar larvae of Helicoverpa armigera Hubner. Natl Acad Sci Lett 35:271–276

    Article  Google Scholar 

  • Isman MB (2005) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  Google Scholar 

  • Januário AH, Vieira PC, Silva MFGF, Fernandes JB (2009) Alcaloides β – indolopiridoquinazolínicos de Esenbeckia grandiflora MART. (RUTACEAE). Quim Nova 32:2034–2038

    Article  Google Scholar 

  • Jeyabalan D, Murugan K (1999) Effect of certain plant extracts against the mosquito Anopheles stephensi Liston. Curr Sci 76:631–633

    Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2009) Sistemática Vegetal: Um enfoque filogenético. Artmed, Porto Alegre

    Google Scholar 

  • Katerinopoulos HE, Pagona G, Afratis A, Stratigakis N, Roditakis N (2005) Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. J Chem Ecol 31:111–122

    Article  PubMed  CAS  Google Scholar 

  • Kelecom A, Rocha MA, Majdalani EC, Gonzalez MS, Mello CB (2002) Novas atividades biológicas em antigos metabólitos: ácido oleanóico e eugenol de Eugenia caryophyllata. Braz J Farmacog 12:70–71

    Article  Google Scholar 

  • Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387

    Article  PubMed  CAS  Google Scholar 

  • Laurent D, Vilaseca A, Chaintrane JM, Ballivan C, Saavedra G, Ibanez R (1997) Inseticidal activity of essential oils on Triatoma Infestans. Phytother Res 11:285–290

    Article  CAS  Google Scholar 

  • Lazzari CR (1992) Circadian organization of locomotion activity in the hematophagous bug Triatoma infestans. J Insect Physiol 38:895–903

    Article  Google Scholar 

  • Mauchline AL, Osborne JL, Martin AP, Poppy GM, Powell W (2005) The effects of non-host plant essential oil volatiles on the behaviour of the pollen beetle Meligethes aeneus. Entomol Exp Appl 114:181–188

    Article  CAS  Google Scholar 

  • Mello CB, Uzeda CD, Bernardino MV, Mendonça – Lopes D, Kelecom A, Fevereiro PCA, Guerra MS, Oliveira AP, Rocha LM, Gonzalez MS (2007) Effects of the essential oil obtained from Pilocarpus spicatus Saint-Hilaire (Rutaceae) on the development of Rhodnius prolixus nymphae. Braz J Farmacog 14:514–521

    Google Scholar 

  • Murugan K, Jeyabalan D, Senthilkumar N, Babu R, Sivaramakrishnan S (1996) Antipupational effect of neem seed kernel extract against mosquito larvae of Anopheles stephensi (Liston). J Ent Res 20:137–139

    Google Scholar 

  • Muthukrishnan J, Pushpalatha E, Kasthuribhai A (1997) Biological effects of four plants extract on Culex quinquefasciatus larval stages. Insect Sci Appl 17:389–394

    Google Scholar 

  • Pirani JR (2002) Rutaceae. In: Wanderley MGL, Shepherd GJ, Giulietti AM (eds) Flora Fanerogâmica do Estado de São Paulo, 1st edn. FAPESP, São Paulo, pp 281–308

    Google Scholar 

  • Pirani JR (2014) Zanthoxylum. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, http://floradoBRAZIL.jbrj.gov.br/jabot/floradoBRAZIL/FB1064. Accessed 26 July 2014

  • Pirani JR, Groppo M (2014) Rutaceae. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, http://floradoBRAZIL.jbrj.gov.br/jabot/floradoBRAZIL/FB212. Accessed 26 July 2014

  • Prieto JA, Patiño OJ, Delgado WA, Moreno JP, Cuca LE (2011) Chemical composition, insecticidal, and antifungal activities of fruit essential oils of three Colombian Zanthoxylum species. Chil J Agr Res 71:73–82

    Article  Google Scholar 

  • Raghavendra K, Subbarao SK (2002) Chemical insecticides in malaria vector control in India. ICMR Bull 32:1–7

    Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    Article  CAS  Google Scholar 

  • Reveal JL, Chase MW (2011) APG III: Bibliographical Information and Synonymy of Magnoliidae. Phytotaxa 19:71–134

    Google Scholar 

  • Schaub GA (2009) Interactions of trypanosomatids and triatomines. Adv Insect Physiol 37:177–242

    Article  Google Scholar 

  • Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 104:237–244

    Article  PubMed  CAS  Google Scholar 

  • Sulaiman S, Jeffery J, Sohadi RA (1994) Residual efficacy of triflumuron against the dengue vector, Aedes albopictus (Skuse). Bull Soc Vec Ecol 19:111–114

    Google Scholar 

  • Takano-Lee M, Edman JD (2001) Movement of Rhodnius prolixus (Hemiptera: Reduviidae) within a simulated house environment. J Med Entomol 38:829–835

    Article  PubMed  CAS  Google Scholar 

  • Tunc I, Erler F (2003) Repellency and repellent stability of essential oil constituents against Tribolium confusum. Z Pflanzenk Pflanzen 110:394–400

    CAS  Google Scholar 

  • Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. J Chromat 11:463–71

    Article  Google Scholar 

  • Venkatachalam MR, Jebanesan A (2001) Repellent activity of Ferronia elephantum Corr. (Rutaceae) leaf extract against Aedes aegypti. Bioresour Tech 76:287–288

    Article  CAS  Google Scholar 

  • Vieira MGS, Freitas JVB, Neto MNL, Gramosa NV, Nunes EP (2009) Constituintes químicos voláteis das folhas e galhos de Zanthoxylum syncarpum Tull. Quim Nova 3:391–393

    Article  Google Scholar 

  • Vilaseca A, Guy I, Charles B, Guinaudeau H, Arias AR, Fournet A (2004) Chemical composition and insecticidal activity of Hedeoma mandoniana essential oil. J Essent Oil Res 16:380–383

    Article  CAS  Google Scholar 

  • Wang CF, Yang K, Zhang H, Cao J, Fang R, Liu ZL, Du SS, Wang YY, Deng ZW, Zhou L (2011) Components and insecticidal activity against the maize weevils of Zanthoxylum schinifolium fruits and leaves. Molecules 16:3077–3088

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth VB (1934a) The physiology of ecdysis in Rhodnius prolixus (Hemiptera) II. Factors controlling moulting and metamorphosis. Quart J Micr Sci 77:191–222

    Google Scholar 

  • Wigglesworth VB (1934b) Factors controlling moulting and metamorphosis in an insect. Nature 135:725–726

    Article  Google Scholar 

  • Wigglesworth VB (1943) The fate of haemoglobin in Rhodnius prolixus (Hemiptera) and other blood-sucking arthropods. Proc Roy Soc Lond 131:313–339

    Article  CAS  Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology. Chapman Hall, London

    Google Scholar 

  • World Health Organization (2006) Pesticides and their application: for the control of vectors and pests of public health importance. WHO, Genebra

    Google Scholar 

Download references

Acknowledgments

We thank Universidade Federal Fluminense for the grants to the scientific initiation students as well as Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and PROCIENCIA-Universidade do Estado do Rio de Janeiro for financial support. We also thank José Rubens Pirani (Universidade de São Paulo) for the confirmation of species identification and Genilton José Vieira and Heloisa Maria Nogueira Diniz (Laboratório de Produção e Tratamento de Imagens, Instituto Oswaldo Cruz/FIOCRUZ) for helping with the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, J., Mourão, S.C., Dolabela, I.B. et al. Zanthoxylum caribaeum (Rutaceae) essential oil: chemical investigation and biological effects on Rhodnius prolixus nymph. Parasitol Res 113, 4271–4279 (2014). https://doi.org/10.1007/s00436-014-4105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4105-4

Keywords

Navigation