Skip to main content
Log in

Assessment of the impact of plant species composition and drought stress on survival of strongylid third-stage larvae in a greenhouse experiment

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Grazing livestock is always exposed to infective parasite stages. Depending on the general health status of the animal, the farm management, environmental conditions and pasture exposure, the impact ranges from non-affected to almost moribund animals. The greenhouse experiment was performed to investigate how climatic changes and plant composition influence the occurrence/survival of strongylid third-stage larvae (L3) on pasture. Ten different types of plant species compositions (eight replicates for each) were inoculated with approximately 10,000 Cooperia oncophora L3. The different plant compositions can be assorted to two groups: without legume content and with legume content (52–62 % legume content). Half of the replicates were watered adequately, while the other half was hold under drought stress (DS), mimicking longer dry periods. During the DS cycles, the respective containers were not watered until they reached the wilting point. Grass samples were taken 1, 4 and 6 weeks after inoculation, soil samples were taken only once after 6 weeks and all samples were examined for occurrence of L3. After the second DS cycle, the number of L3 present on herbage samples was reduced significantly. The higher the legume content of the pasture composition, the higher is the L3 occurrence on pasture. Independent of the watering scheme, the soil served as the most important reservoir with consistently higher numbers of L3 in the soil compared to herbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agneessens J, Dorny P, Hollanders W, Claerebout E, Vercruysse J (1997) Epidemiological observations on gastrointestinal nematode infections in grazing cow-calf pairs in Belgium. Vet Parasitol 69:65–75

    Article  PubMed  CAS  Google Scholar 

  • Alcamo J. MJM, Nováky B., Bindi M., Corobov R., Devoy R.J.N., Giannakopoulos C., Martin E., Olesen J.E., Shvidenko A (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Universtity Press:pp. 541–580

  • Amaradasa BS, Lane RA, Manage A (2010) Vertical migration of Haemonchus contortus infective larvae on Cynodon dactylon and Paspalum notatum pastures in response to climatic conditions. Vet Parasitol 170:78–87

    Article  PubMed  Google Scholar 

  • Anziani OS, Zimmermann G, Guglielmone AA, Vazquez R, Suarez V (2001) Avermectin resistance in Cooperia pectinata in cattle in Argentina. Vet Rec 149:58–59

    Article  PubMed  CAS  Google Scholar 

  • Anziani OS, Suarez V, Guglielmone AA, Warnke O, Grande H, Coles GC (2004) Resistance to benzimidazole and macrocyclic lactone anthelmintics in cattle nematodes in Argentina. Vet Parasitol 122:303–306

    Article  PubMed  CAS  Google Scholar 

  • Armour J et al (1987) Pathophysiological and parasitological studies on Cooperia oncophora infections in calves. Res Vet Sci 42:373–381

    PubMed  CAS  Google Scholar 

  • Averyt K et al (2013) Sectoral contributions to surface water stress in the coterminous United States. Environ Res Lett 8:035046

    Article  Google Scholar 

  • Azam D, Ukpai OM, Said A, Abd-Allah GA, Morgan ER (2012) Temperature and the development and survival of infective Toxocara canis larvae. Parasitol Res 110:649–656

    Article  PubMed  Google Scholar 

  • Bennema SC et al (2010) Epidemiology and risk factors for exposure to gastrointestinal nematodes in dairy herds in northwestern Europe. Vet Parasitol 173:247–254

    Article  PubMed  Google Scholar 

  • Callinan AP, Westcott JM (1986) Vertical distribution of trichostrongylid larvae on herbage and in soil. Int J Parasitol 16:241–244

    Article  PubMed  CAS  Google Scholar 

  • Charlier J, Demeler J, Hoglund J, von Samson-Himmelstjerna G, Dorny P, Vercruysse J (2010) Ostertagia ostertagi in first-season grazing cattle in Belgium, Germany and Sweden: general levels of infection and related management practices. Vet Parasitol 171:91–98

    Article  PubMed  Google Scholar 

  • Chmielewski F-M, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121:69–78

    Article  Google Scholar 

  • Chylinski C, Lhermine E, Coquille M, Cabaret J (2014) Desiccation tolerance of gastrointestinal nematode third-stage larvae: exploring the effects on survival and fitness. Parasitol Res

  • Crofton HD (1948) The ecology of immature phases of trichostrongyle nematodes; the vertical distribution of infective larvae of Trichostrongylus retortaeformis in relation to their habitat. Parasitology 39:17–25

    Article  PubMed  CAS  Google Scholar 

  • Demeler J, Knapp F, Corte GM, Katzschke O, Steininger K, Samson-Himmelstjerna G (2012) Recovery of strongylid third-stage larvae from herbage samples: standardisation of a laboratory method and its application in the field. Parasitol Res 110:1159–1164

    Article  PubMed  Google Scholar 

  • Deplazes P, Eckert J, von Samson-Himmelstjerna G, Zahnder H (2012) Lehrbuch der parasitologie für die Tiermedizin. Enke Verlag, Stuttgart

    Google Scholar 

  • Dierschke H, Briemle G (2002) Kulturgrasland: Wiesen, Weiden und verwandte Staudenfluren; 20 Tabellen. E. Ulmer

  • Fahrmeir L, Kneib T, Lang S (2007) Regression: modelle, methoden und anwendungen (Statistik und ihre Anwendungen) Springer, Berlin Heidelberg

  • Fakae BB, Chiejina SN (1988) Relative contributions of late dry-season and early rains pasture contaminations with trichostrongyle eggs to the wet-season herbage infestation in eastern Nigeria. Vet Parasitol 28:115–123

    Article  PubMed  CAS  Google Scholar 

  • Ferdushy T, Hasan MT (2010) Survival of first stage larvae (L1) of Angiostrongylus vasorum under various conditions of temperature and humidity. Parasitol Res 107:1323–1327

    Article  PubMed  Google Scholar 

  • Fiel CA, Saumell CA, Steffan PE, Rodriguez EM (2001) Resistance of Cooperia to ivermectin treatments in grazing cattle of the Humid Pampa, Argentina. Vet Parasitol 97:211–217

    Article  PubMed  CAS  Google Scholar 

  • Fiel CA, Fernández AS, Rodríguez EM, Fusé LA, Steffan PE (2012) Observations on the free-living stages of cattle gastrointestinal nematodes. Vet Parasitol 187:217–226

    Article  PubMed  CAS  Google Scholar 

  • Garcia Romero C, Valcarcel F, Rojo Vazquez FA (1997) Influence of climate on pasture infectivity of ovine trichostrongyles in dry pastures. Zentralbl Veterinarmed B 44:437–443

    PubMed  CAS  Google Scholar 

  • Gasser RB, Newton SE (2000) Genomic and genetic research on bursate nematodes: significance, implications and prospects. Int J Parasitol 30:509–534

    Article  PubMed  CAS  Google Scholar 

  • Gruner L, Sauve C (1982) The distribution of trichostrongyle infective larvae on pasture and grazing behaviour in calves. Vet Parasitol 11:203–213

    Article  PubMed  CAS  Google Scholar 

  • Haberlandt U, Belli A, Hölscher J (2010) Trends in beobachteten zeitreihen von temperatur und niederschlag in niedersachsen. Hydrol Wasserbewirtsch 54:28–36

    Google Scholar 

  • Jacob D, Bülow K, Kotova L, Moseley C, Petersen J, Rechid D (2012) Regionale klimaprojektionen für Europa und deutschland: ensemble-simulationen für die klimafolgenforschung CSC Report 6, climate service center, Germany. Climate service center (CSC), Fischertwiete 1, 20095 Hamburg

  • Knapp-Lawitzke F, Von Samson-Himmelstjerna G, Demeler J (2014) Rapid method for recovery of strongylid third stage larvae of parasitic nematodes from small soil samples. Exp Parasitol. doi:10.1016/j.exppara.2014.04.006

    PubMed  Google Scholar 

  • Knox MR et al (2012) Novel approaches for the control of helminth parasites of livestock VI: summary of discussions and conclusions. Vet Parasitol 186:143–149

    Article  PubMed  CAS  Google Scholar 

  • Küchenmeister F, Küchenmeister K, Wrage N, Kayser M, Isselstein J (2012a) Yield and yield stability in mixtures of productive grassland species: does species number or functional group composition matter? Grassl Sci 58:94–100

    Article  Google Scholar 

  • Küchenmeister K, Küchenmeister F, Wrage N, Kayser M, Isselstein J (2012b) Establishment and early yield development of five possible alternatives to Trifolium repens as a grassland legume. J Agric Sci 4:86–95

    Google Scholar 

  • Leathwick DM (2013) The influence of temperature on the development and survival of the pre-infective free-living stages of nematode parasites of sheep. N Z Vet J 61:32–40

    Article  PubMed  CAS  Google Scholar 

  • Lettini SE, Sukhdeo MV (2006) Anhydrobiosis increases survival of trichostrongyle nematodes. J Parasitol 92:1002–1009

    Article  PubMed  CAS  Google Scholar 

  • Levine ND, Todd KS Jr (1975) Micrometeorological factors involved in development and survival of free-living stages of the sheep nematodes Haemonchus contortus and Trichostrongylus colubriformis. A review. Int J Biometeorol 19:174–183

    Article  PubMed  CAS  Google Scholar 

  • Marley CL, Cook R, Barrett J, Keatinge R, Lampkin NH (2006) The effects of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) when compared with perennial ryegrass (Lolium perenne) on ovine gastrointestinal parasite development, survival and migration. Vet Parasitol 138:280–290

    Article  PubMed  CAS  Google Scholar 

  • Mejia ME, Fernandez Igartua BM, Schmidt EE, Cabaret J (2003) Multispecies and multiple anthelmintic resistance on cattle nematodes in a farm in Argentina: the beginning of high resistance? Vet Res 34:461–467

    Article  PubMed  CAS  Google Scholar 

  • Morgan ER, van Dijk J (2012) Climate and the epidemiology of gastrointestinal nematode infections of sheep in Europe. Vet Parasitol 189:8–14

    Article  PubMed  CAS  Google Scholar 

  • Nansen P, Foldager J, Hansen JW, Henriksen SA, Jørgensen RJ (1988) Grazing pressure and acquisition of Ostertagia ostertagi in calves. Vet Parasitol 27:325–335

    Article  PubMed  CAS  Google Scholar 

  • Niven P, Anderson N, Vizard AL (2002) Trichostrongylid infections in sheep after rainfall during summer in southern Australia. Aust Vet J 80:567–570

    Article  PubMed  CAS  Google Scholar 

  • Nkengafac JN, Nkeng EG, Ehabe EE, Schnug E (2013) A comparative study on the use of calcium acetate lactate, calcium chloride and acidic ammonium acetate- ethylene diaminetetra acetic acid (AAAc-EDTA) for the quantification of extractable, P, K and Mg from acidic soils. Int Res J Pure Appl Chem 3:22–31

    Article  Google Scholar 

  • O’Connor LJ, Kahn LP, Walkden-Brown SW (2008) Interaction between the effects of evaporation rate and amount of simulated rainfall on development of the free-living stages of Haemonchus contortus. Vet Parasitol 155:223–234

    Article  PubMed  Google Scholar 

  • Ramírez-Restrepo CA, Barry TN, Pomroy WE, López-Villalobos N, McNabb WC, Kemp PD (2005) Use of Lotus corniculatus containing condensed tannins to increase summer lamb growth under commercial dryland farming conditions with minimal anthelmintic drench input. Anim Feed Sci Tech 122:197–217

  • Santos MC, Silva BF, Amarante AF (2012) Environmental factors influencing the transmission of Haemonchus contortus. Vet Parasitol 188:277–284

    Article  PubMed  Google Scholar 

  • Silangwa SM, Todd AC (1964) Vertical migration of trichostrongylid larvae on grasses. Parasitol Res 50:278–285

    CAS  Google Scholar 

  • Smith G, Grenfell BT, Anderson RM (1986) The development and mortality of the non-infective free-living stages of Ostertagia ostertagi in the field and in laboratory culture. Parasitology 92(Pt 2):471–482

    Article  PubMed  Google Scholar 

  • Smolik JD, Lewis JK (1982) Effect of range condition on density and biomass of nematodes in a mixed prairie ecosystem. J Range Manag 35:657–663

    Article  Google Scholar 

  • Solomon S, et al. (2007) Climate change 2007: the physical science basis: contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, et al. (eds).

  • Soutello RG, Seno MC, Amarante AF (2007) Anthelmintic resistance in cattle nematodes in northwestern Sao Paulo State, Brazil. Vet Parasitol 148:360–364

    Article  PubMed  CAS  Google Scholar 

  • Stromberg BE (1997) Environmental factors influencing transmission. Vet Parasitol 72:247–256, discussion 257–264

    Article  PubMed  CAS  Google Scholar 

  • Stromberg BE et al (2012) Cooperia punctata: effect on cattle productivity? Vet Parasitol 183:284–291

    Article  PubMed  Google Scholar 

  • Suarez VH, Cristel SL (2007) Anthelmintic resistance in cattle nematode in the western Pampeana region of Argentina. Vet Parasitol 144:111–117

    Article  PubMed  CAS  Google Scholar 

  • Tuchinda C, Srivannaboon S, Lim HW (2006) Photoprotection by window glass, automobile glass, and sunglasses. J Am Acad Dermatol 54:845–854

    Article  PubMed  Google Scholar 

  • van Dijk J, Morgan ER (2011) The influence of water on the migration of infective trichostrongyloid larvae onto grass. Parasitology 138:780–788

    Article  PubMed  Google Scholar 

  • van Dijk J, de Louw MD, Kalis LP, Morgan ER (2009) Ultraviolet light increases mortality of nematode larvae and can explain patterns of larval availability at pasture. Int J Parasitol 39:1151–1156

    Article  PubMed  Google Scholar 

  • van Wyk JA (2001) Refugia—overlooked as perhaps the most potent factor concerning the development of anthelmintic resistance. Onderstepoort J Vet Res 68:55–67

    PubMed  Google Scholar 

  • Waghorn TS et al (2011) Dynamics of the free-living stages of sheep intestinal parasites on pasture in the North Island of New Zealand. 1. Patterns of seasonal development. N Z Vet J 59:279–286

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Bilkovich FR (1973) Distribution of Ostertagia ostertagi infective larvae on pasture herbage. Am J Vet Res 34:1337–1344

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank KLIFF (Niedersächsisches Ministerium für Wissenschaft und Kultur, Germany) for initiation and support of the study, the University of Göttingen and Prof. Isselstein for providing the greenhouse and the over years established containers and Oliver Katschke for helping to examine the 240 soil samples. We also acknowledge the financial support from the GLOWORM (KBBE 2011.1.3-04, No 288975) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Demeler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knapp-Lawitzke, F., Küchenmeister, F., Küchenmeister, K. et al. Assessment of the impact of plant species composition and drought stress on survival of strongylid third-stage larvae in a greenhouse experiment. Parasitol Res 113, 4123–4131 (2014). https://doi.org/10.1007/s00436-014-4084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4084-5

Keywords

Navigation