Parasitology Research

, Volume 113, Issue 9, pp 3167–3175 | Cite as

Characterization, mode of action, and efficacy of twelve silica-based acaricides against poultry red mite (Dermanyssus gallinae) in vitro

  • Johanna Schulz
  • Jutta Berk
  • Johanna Suhl
  • Lars Schrader
  • Stefan Kaufhold
  • Inga Mewis
  • Hafez Mohammed Hafez
  • Christian Ulrichs
Original Paper


Poultry red mite infestation still is an unsolved problem in poultry farms. Legal regulations, residue risks, and resistances limit chemical control of mites. Alternatives to chemical acaricides for control of poultry red mite are silica-based products, which have as a main constituent silicon dioxide. The acaricidal effect is attributed to sorptive properties of the particles, which result in the mite’s death by desiccation. In the present study, the acaricidal efficacy of 12 products containing natural or synthetic silica, 9 in powder form, and 3 for liquid application was tested under laboratory conditions. Mite mortality was measured at several intervals and the mean lethal time (LT50) determined by Probit analysis after Abbott’s correction. The LT50 values of the products significantly differed (Tukey’s HSD p < 0.05). LT50 values of powdery formulations ranged from 5.1 to 18.7 h and overlapped with those of the fluid ones which ranged from 5.5 to 12.7 h. In order to explain the differences in efficacy of the tested silica products, further characterizations were carried out. X-ray fluorescence, specific surface, cation exchange capacity (CEC), and water absorption capacity (WAC) were measured. Furthermore, electron microscopy was conducted and different products compared. Silicon dioxide content (ranging from 65 to 89 % for powders and 57 to 80 % for fluids) had no significant impact on efficacy, while specific surface and CEC (2.4–23.2 mEq 100−1 g−1 for powders and 18–30.8 mEq 100−1 g−1) were positively and WAC (1.3–4.4 wt% for powders and 3.3–4.8 wt% for fluids) negatively related to the acaricidal efficacy. Influence of these parameters on acaricidal efficacy was significant according to the results of a stepwise regression analysis (p < 0.01).


Dermanyssus gallinae Acaricides Silicon dioxide Red poultry mite Diatomaceous earth Poultry mite 



We thank Prof. Hiepe from the Department of Molecular Parasitology (HU Berlin) and Dr. Liebisch from Zecklab (Burgwedel) for supporting this research. The authors wish to express appreciation to the Federal Programme for Organic and Sustainable Farming (BÖLN), which supported this work.


  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entom 18:265–267Google Scholar
  2. Abdel-Ghaffar F, Sobhy HM, Al-Quraishy S, Semmler M (2008) Field study on the efficacy of an extract of neem seed (Mite-Stop (R)) against the red mite Dermanyssus gallinae naturally infecting poultry in Egypt. Parasitol Res 103:481–485PubMedCrossRefGoogle Scholar
  3. Akbar W, Lord JC, Nechols JR, Howard RW (2004) Diatomaceous earth increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidia attachment. J Econ Entom 2:273–280CrossRefGoogle Scholar
  4. Arnaud L, Tran Thi Lan H, Brostaux Y, Haubruge E (2005) Efficacy of diatomaceous earth formulations admixed with grain against populations of Tribolium castaneum. J Stored Prod Res 2:121–130CrossRefGoogle Scholar
  5. Badii BK, Adarklwah C, Obeng-Ofori D, Ulrichs C (2013) Efficacy of diatomaceous earth formulations against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in Kersting’s groundnut (Macrotyloma geocarpum Harms): influence of dosage rate and relative humidity. J Pest Sci. doi: 10.1007/s10340-013-0548-0 Google Scholar
  6. Bennett DC, Yee A, Rhee Y-J, Cheng KM (2011) Effect of diatomaceous earth on parasite load, egg production, and egg quality of free-range organic laying hens. Poult Sci 7:1416–1426CrossRefGoogle Scholar
  7. Biocidal Products Directive 98/8/EC of the European Parliament and of the Council (1998) Concerning the placing of biocidal products on the marketGoogle Scholar
  8. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  9. Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer, 1778): current situation and future prospects for control. Vet Parasitol 3:239–245CrossRefGoogle Scholar
  10. Ebeling W (1971) Sorptive dusts for pest control. Annual Rev Entomol 1:123–158CrossRefGoogle Scholar
  11. EFSA (2009) Calcium silicate and silicon dioxide/silicic acid gel added for nutritional purposes to food supplements, scientific opinion of the panel on food additives and nutrient sources added to food. EFSA Journal 1132:1–24Google Scholar
  12. EVM (2003) Expert Group on Vitamins and Minerals. Safe upper levels for vitamins and minerals, silicon & calcium, UK Food Standards Agency. ISBN 1-904026-11-7Google Scholar
  13. Faulde MK, Tisch M, Scharninghausen JJ (2006) Efficacy of modified diatomaceous earth on different cockroach species (Orthoptera, Blattellidae) and silverfish (Thysanura, Lepismatidae). J Pest Sci 3:155–161CrossRefGoogle Scholar
  14. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, New York, 333Google Scholar
  15. Finney DJ (1978) Statistical method in biological assay. Charles Griffin, London, 508Google Scholar
  16. Ghiazza M, Polimeni M, Fenoglio I, Gazzano E, Ghigo D, Fubini B (2010) Does vitreous silica contradict the toxicity of the crystalline silica paradigm? Chem Res Toxicol 23:620–629PubMedCrossRefGoogle Scholar
  17. Golob P (1997) Current status and future perspectives for inert dusts for control of stored product insects. J Stored Prods Res 1:69–79CrossRefGoogle Scholar
  18. Hadley NF (1994) Water relations of terrestrial arthropods. Academic Press, New YorkGoogle Scholar
  19. Hamscher G, Priess B, Nau H (2007) Determination of phoxim residues in eggs by using high-performance liquid chromatography diode array detection after treatment of stocked housing facilities for the poultry red mite (Dermanyssus gallinae). Anal Chim Acta 1–2:330–335CrossRefGoogle Scholar
  20. Islam MS, Hasan MM, Lei C, Mucha-Pelzer T, Mewis I, Ulrichs C (2009) Direct and admixture toxicity of diatomaceous earth and monoterpenoids against the storage pests Callosobruchus maculatus (F.) and Sitophilus oryzae (L.). J Pest Sci 2:105–112Google Scholar
  21. Kilpinen O, Steenberg T (2009) Inert dusts and their effects on the poultry red mite (Dermanyssus gallinae). Exp Appl Acarol 1–2:51–62CrossRefGoogle Scholar
  22. Kilpinen O, Roepstorff A, Permin A, Nørgaard-Nielsen G, Lawson LG, Simonsen HB (2005) Influence of Dermanyssus gallinae and Ascaridia galli infections on behaviour and health of laying hens (Gallus gallus domesticus). Br Poult Sci 1:26–34CrossRefGoogle Scholar
  23. Korunic Z (1998) Review diatomaceous earths, a group of natural insecticides. J Stored Prod Res 2–3:87–97CrossRefGoogle Scholar
  24. Lamina J, Kruner N (1965) Die insektizide Wirkung hochdisperser Kieselsäuren auf die Ektoparasiten des Geflügels. Dtsch tierärztl Wochenschr 73:124–129Google Scholar
  25. Le Patourel GNJ, Singh J (1984) Toxicity of amorphous silicas and silica-pyrethroid mixtures to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 4:183–190CrossRefGoogle Scholar
  26. Lehane MJ (2005) The biology of blood-sucking in insects. University Press, CambridgeCrossRefGoogle Scholar
  27. Liebisch A, Liebisch G (1999) Erfolgreiche Ektoparasitenbekämpfung. In: Jahrbuch für die Geflügelwirtschaft 60–63Google Scholar
  28. Liebisch A, Liebisch G (2003) Biologie, Schäden und Bekämpfung beim Befall durch die Rote Vogelmilbe (Dermanyssus gallinae). Lohmann Information 4:1–7Google Scholar
  29. Limbach KL, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376PubMedCrossRefGoogle Scholar
  30. Marangi M, Cafiero MA, Capelli G, Camarda A, Sparagano OAE, Giangaspero A (2009) Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. Exp Appl Acarol 1–2:11–18CrossRefGoogle Scholar
  31. Marangi M, Morelli V, Pati S, Camarda A, Cafiero MA, Giangaspero A (2012) Acaricide residues in laying hens naturally infested by Red Mite Dermanyssus gallinae. PLoS ONE 2:e31795CrossRefGoogle Scholar
  32. Maurer V, Perler E (2006) Silicas for control of the poultry red mite Dermanyssus gallinae. Organic congress 2006. Odense 504–505Google Scholar
  33. Maurer V, Bieri M, Folsch DW (1988) Host-finding of Dermanyssus gallinae in poultry-houses. Archiv für Geflügelkunde 59:209–215Google Scholar
  34. Maurer V, Perler E, Heckendorn F (2009) In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae. Exp Appl Acarol 1–2:31–41CrossRefGoogle Scholar
  35. Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clay Clay Miner 47:386–388Google Scholar
  36. Mewis I, Ulrichs C (1999) Wirkungsweise amorpher Diatomeenerden auf vorratsschädliche Insekten. Untersuchung der abrasiven sowie sorptiven Effekte. Anz Schädlingskde. Pflanzenschutz, Umweltschutz 5:113–121CrossRefGoogle Scholar
  37. Mewis I, Ulrichs C (2001) Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum, Tenebrio molitor, Sitophilus granarius and Plodia interpunctella. J Stored Prod Res 2:153–164CrossRefGoogle Scholar
  38. Mucha-Pelzer T, Debnath N, Goswami A, Mewis I (2008) Comparison of different silicas of natural origin as possible insecticides. Commun Agric Appl Biol Sci 3:621–628Google Scholar
  39. Mucha-Pelzer T, Mewis I, Ulrichs C (2010) Efficacy of different natural and synthetic silicas against two stored grain pests: Sitophilus granarius (L.) and Sitophilus oryzae (L.). Acta Hort 858:311–318Google Scholar
  40. Rigaux M, Haubruge E, Fields PG (2001) Mechanisms for tolerance to diatomaceous earth between strains of Tribolium castaneum. Entom Exp Applicata 1:33–39CrossRefGoogle Scholar
  41. Sparagano O, Pavlićević A, Murano T, Camarda A, Sahibi H, Kilpinen O, Mul M, Emous R, Bouquin S, Hoel K, Cafiero MA (2009) Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Exp Appl Acarol 1–2:3–10CrossRefGoogle Scholar
  42. Trofymluk O, Levchenko AA, Tolbert SH, Navrotsky A (2005) Energetics of mesoporous silica: investigation into pore size and symmetry. Chem Mat 17:3772–3783CrossRefGoogle Scholar
  43. Ulrichs C, Mewis I, Reichmuth C (2004) Diatomeenerden—Wirksamkeit bei hohen Luftfeuchten. Der Praktische Schädlingsbekämpfer 56:11Google Scholar
  44. Ulrichs C, Entenmann S, Goswami A, Mewis I (2006) Abrasive und hydrophil/lipophile Effekte unterschiedlicher inerter Stäube im Einsatz gegen Schadinsekten am Beispiel des Kornkäfers Sitophilus granarius L. Ges Pflanzen 3:173–181CrossRefGoogle Scholar
  45. Ulrichs C, Krause F, Goswami A, Kaufhold S, Mewis I (2008) Insektizide Wirkung eines natürlichen Silikates (AL06) im Vergleich zu anderen silikathaltigen Stäuben gegenüber dem Kornkäfer: Sitophilus granarius (L.). Mitt Dtsch Ges Allg Angew Ent 16:269–272Google Scholar
  46. Zhang H, Dunphy DR, Jiang X, Meng H, Sun B, Tarn D, Xue M, Wang X, Lin S, Ji Z, Li R, Garcia FL, Yang J, Kirk ML, Xia T, Zink JI, Nel A, Jeffrey C (2012) Processing pathway dependence of amorphous silica nanoparticle toxicity—colloidal versus pyrolytic. J Am Chem Soc 26:15790–15804CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Johanna Schulz
    • 1
    • 2
  • Jutta Berk
    • 1
  • Johanna Suhl
    • 3
  • Lars Schrader
    • 1
  • Stefan Kaufhold
    • 4
  • Inga Mewis
    • 3
  • Hafez Mohammed Hafez
    • 2
  • Christian Ulrichs
    • 3
  1. 1.Institute of Animal Welfare and Animal HusbandryFriedrich-Loeffler InstitutCelleGermany
  2. 2.Institute of Poultry DiseasesFU BerlinBerlinGermany
  3. 3.Faculty of Life SciencesHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Federal Institute for Geosciences and Natural ResourcesHannoverGermany

Personalised recommendations