Skip to main content
Log in

Biochemical characterization and role of the proteasome in the oxidative stress response of adult Schistosoma mansoni worms

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The trematode Schistosoma mansoni, an important parasite of humans, is the principle agent of the disease schistosomiasis. In the human host, one of the most important stress factors of this parasite is the oxidative stress generated by both the metabolism of the worm and the immune system of the host. The proteasomal system is responsible for protein homeostasis during oxidative stress. The 26S proteasome is a multicatalytic protease formed by two compartments, a 20S core and regulatory particle 19S, and controls the degradation of intracellular proteins, hence regulating many cellular processes. In the present report, we describe the biochemical characterization and role of the 20S proteasome in the response of adult S. mansoni worms exposed to hydrogen peroxide. Characterization of the response to the oxidative stress included the evaluation of viability, egg production, mortality, tegument integrity, and both expression and activity of proteasome. We observed decreases in viability, egg production as well as 100 % mortality at the higher concentrations of hydrogen peroxide tested. The main changes observed in the tegument of adult worms were peeling as well as the appearance of bubbles and a decrease of spines on the tubercles. Furthermore, there were increases in 26S activity to the same extent as 20S proteasome activity, although there was increase of 20S proteasome content, suggesting that degradation of protein oxidized in adult worms is due to the 20S proteasome. It was demonstrated that adult S. mansoni worms are sensitive to oxidative stress, and that a variety of processes in this parasite are altered under this condition. The work contributes to a better understanding of the mechanisms employed by S. mansoni to survive under oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alger HM, Williams DL (2002) The disulfide redox system of Schistosoma mansoni and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. Mol Biochem Parasitol 121:129–139

    Article  CAS  PubMed  Google Scholar 

  • Balog EM, Lockamy EL, Thomas DD, Ferrington DA (2009) Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome. Biochemistry 48:3005–3016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bender RC, Bixler LM, Lerner JP, Bayne CJ (2002) Schistosoma mansoni sporocysts in culture: host plasma hemoglobin contributes to in vitro oxidative stress. J Parasitol 88:14–18

    Article  CAS  PubMed  Google Scholar 

  • Berriman M, Haas BJ, Loverde PT, Wilson RA, Dillon GP, Cerqueira GC, Mashiyawa ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed NM (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460:352–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bertão HG, da Silva RA, Padilha RJ, de Azevedo Albuquerque MC, Rádis-Baptista G (2012) Ultrastructural analysis of miltefosine-induced surface membrane damage in adult Schistosoma mansoni BH strains worms. Parasitol Res 110:2465–2473

    Article  PubMed  Google Scholar 

  • Caffrey CR (2007) Chemotherapy of schistosomiasis: present and future. Curr Opin Chem Biol 11:433–439

    Article  CAS  PubMed  Google Scholar 

  • Coelho JR, Bezerra FS (2006) The effects of temperature change on the infection rate of Biomphalaria glabrata with Schistosoma mansoni. Mem Inst Oswaldo Cruz 101:223–224

    Article  PubMed  Google Scholar 

  • Comley JCW, Rees MJ, Turner CH, Jenkins DC (1989) Calorimetric quantitation of filarial viability. Int J Parasitol 19:77–83

    Article  CAS  PubMed  Google Scholar 

  • Corcoran A, Cotter TG (2013) Redox regulation of protein kinases. FEBS J 5: doi:10.1111/febs.12224

  • Dudek EJ, Shang F, Valverde P, Liu Q, Hobbs M, Taylor A (2005) Selectivity of the ubiquitin pathway for oxidatively modified proteins: relevance to protein precipitation diseases. FASEB J 19:1707–1709

    CAS  PubMed  Google Scholar 

  • El-Ansary A (2003) Biochemical and immunological adaptation in schistosome parasitism. Comp Biochem Physiol B Biochem Mol Biol 136:227–243

    Article  PubMed  Google Scholar 

  • Faghiri Z, Skelly PJ (2009) The role of tegumental aquaporin from the human parasitic worm, Schistosoma mansoni, in osmoregulation and drug uptake. FASEB J 23:2780–2789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandes R, Ramalho J, Pereira P (2006) Oxidative stress upregulates the ubiquitin proteasome pathway in retinal endothelial cells. Mol Vis 12:1526–1535

    CAS  PubMed  Google Scholar 

  • Fernandes FS, Júnior COR, Fernandes TS, da Silveira LS, Rezende CA, De Almeida MV, de Paula RG, Rodrigues V, Da Silva Filho AA, Couri MR (2013) Anthelmintic effects of alkylated diamines and amino alcohols against Schistosoma mansoni. Biomed Res Int. doi:10.1155/2013/783490

    Google Scholar 

  • Fitzpatrick JM, Hirai Y, Hirai H, Hoffmann KF (2007) Schistosome egg production is dependent upon the activities of two developmentally regulated tyrosinases. FASEB J 21:823–835

    Article  CAS  PubMed  Google Scholar 

  • Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580:2910–2916

    Article  CAS  PubMed  Google Scholar 

  • Greenberg RM (2005) Are Ca2+ channels targets of praziquantel action? Int J Parasitol 35:1–9

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Catalgol B, Licht A, Ermak G, Pickering AM, Ngo JK, Davies KJ (2011) HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med 51:1355–1364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guerra-Sá R, Castro-Borges W, Evangelista EA, Kettelhut IC, Rodrigues V (2005) Schistosoma mansoni: functional proteasomes are required for development in the vertebrate host. Exp Parasitol 109:228–236

    Article  PubMed  Google Scholar 

  • Hahn UK, Bender RC, Bayne CJ (2001) Killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata: role of reactive oxygen species. J Parasitol 87:292–299

    Article  CAS  PubMed  Google Scholar 

  • Harnett W, Kusel JR (1986) Increased exposure of parasite antigens at the surface of adult male Schistosoma mansoni exposed to praziquantel in vitro. Parasitology 93:401–405

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Kosman DJ, Thakur A, Rekosh D, LoVerde PT (1992) Identification and purification of a second form of Cu/Zn superoxide dismutase from Schistosoma mansoni. Infect Immun 60:3641–3651

  • Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y (2006) Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat β-cell line RIN-5 F. Cell Calcium 39:487–494

    Article  CAS  PubMed  Google Scholar 

  • Ismail M, Botros S, Metwally A, William S, Farghally A, Tao LF, Day TA, Bennett JL (1999) Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am J Trop Med Hyg 60:932–935

    CAS  PubMed  Google Scholar 

  • Kaczorowski GJ, Mcmanus OB, Priest BT, Garcia ML (2008) Ion channels as drug targets: the next GPCRs. J Gen Physiol 131:399–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kastle M, Grune T (2011) Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system. Curr Pharm Des 17:4007–4022

    Article  PubMed  Google Scholar 

  • Kastle M, Grune T (2012) Interactions of the proteasomal system with chaperones: protein triage and protein quality control. Prog Mol Biol Transl Sci 109:113–160

    Article  PubMed  Google Scholar 

  • Kazura JW, Fanning MM, Blumer JL, Mahmoud AAF (1981) Role of cell-generated hydrogen peroxide in granulocyte-mediated killing of schistosomula of Schistosoma mansoni in vitro. J Clin Invest 67:93–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keiser J, Manneck T, Vargas M (2011) Interactions of mefloquine with praziquantel in the Schistosoma mansoni mouse model and in vitro. J Antimicrob Chemother 66:1791–1797

    Article  CAS  PubMed  Google Scholar 

  • Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-Petersen R (2011) Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxid Redox Signal 15:2265–2299

    Article  CAS  PubMed  Google Scholar 

  • Kwak YD, Wang B, Li JJ, Wang R (2012) Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J Neurosci 32:10971–10981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Launay N, Ruiz M, Fourcade S, Schlüter A, Guilera C, Ferrer I, Knecht E, Pujol A (2013) Oxidative stress regulates the ubiquitin–proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy. Brain 136:891–904

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luz PP, Magalhães LG, Pereira AC, Cunha WR, Rodrigues V, Andrade E, Silva ML (2012) Curcumin loaded into PLGA nanoparticles: preparation and in vitro schistosomicidal activity. Parasitol Res 110:593–598

    Article  PubMed  Google Scholar 

  • Magalhães LG, Machado CB, Morais ER, Moreira EB, Soares CS, da Silva SH, Da Silva Filho AA, Rodrigues V (2009) In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 104:1197–1201

    Article  PubMed  Google Scholar 

  • Manneck T, Haggenmuller Y, Keiser J (2010) Morphological effects and tegumental alterations induced by mefloquine on schistosomula and adult flukes of Schistosoma mansoni. Parasitology 137:85–98

    Article  CAS  PubMed  Google Scholar 

  • Mathieson W, Castro-Borges W, Wilson RA (2011) The proteasome-ubiquitin pathway in the Schistosoma mansoni egg has development- and morphology-specific characteristics. Mol Biochem Parasitol 175:118–125

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39:321–331

    Article  CAS  PubMed  Google Scholar 

  • McDonald CJ, Jones MK, Wallace DF, Summerville L, Nawaratna S, Subramaniam VN (2010) Increased iron stores correlate with worse disease outcomes in a mouse model of schistosomiasis infection. Plos One 5:e. 9594

    Article  Google Scholar 

  • Mei H, Loverde PT (1997) Schistosoma mansoni: the developmental regulation and immunolocalization of antioxidant enzymes. Exp Parasitol 86:69–78

    Article  CAS  PubMed  Google Scholar 

  • Mostafa OMS, Eid RA, Adly MA (2011) Antischistosomal activity of ginger (Zingiber officinale) against Schistosoma mansoni harbored in C57 mice. Parasitol Res 109:395–403

    Article  PubMed  Google Scholar 

  • Mourão MM, Dinguirard N, Franco GR, Yoshino TP (2009) Phenotypic Screen of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA Interference. PLoS Negl Trop Dis 3:e502. doi:10.1371/journal.pntd.0000502

  • Nare B, Smith JM, Prichard RK (1990) Schistosoma mansoni: levels of antioxidants and resistance to oxidants increase during development. Exp Parasitol 70:389–397

    Article  CAS  PubMed  Google Scholar 

  • Neves JK, de Lima MC, Pereira VR, de Melo CM, Peixoto CA, Pitta Ida R, Albuquerque MC, Galdino SL (2011) Antischistosomal action of thioxo-imidazolidine compounds: an ultrastructural and cytotoxicity study. Exp Parasitol 128:82–90

    Article  CAS  PubMed  Google Scholar 

  • Oke TT, Moskovitz J, Williams DL (2009) Characterization of the methionine sulfoxide reductases of Schistosoma mansoni. J Parasitol 95:1421–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira AS, Padilha RJ, Lima-Filho JL, Chaves ME (2011) Scanning electron microscopy of the human low-density lipoprotein interaction with the tegument of Schistosoma mansoni. Parasitol Res 109:1395–1402

    Article  PubMed  Google Scholar 

  • Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJ (2010) The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J 432:585–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pickering AM, Staab TA, Tower J, Sieburth D, Davies KJ (2013) A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster. J Exp Biol 216:543–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prah SK, James C (1977) The influence of physical factors in the survival and infectivity of miracidia of Schistosoma mansoni and S. haematobium I. Effect of temperature and ultra-violet light. J Helminthol 51:73–85

    Article  CAS  PubMed  Google Scholar 

  • Redman CA, Robertson A, Fallon PG, Modha J, Kusel JR, Doenhoff MJ, Martin RJ (1996) Praziquantel: an urgent and exciting challenge. Parasitol Today 12:14–20

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Ruelas DS, Karentz D, Sullivan JT (2007) Sublethal effects of ultraviolet b radiation on miracidia and sporocysts of Schistosoma mansoni: intramolluscan development, infectivity and photoreactivation. J Parasitol 93:1303–1310

    Article  PubMed  Google Scholar 

  • Sayed AA, Cook SK, Williams DL (2006) Redox balance mechanisms in Schistosoma mansoni rely on peroxiredoxins and albumin and implicate peroxiredoxins as novel drug targets. J Biol Chem 281:17001–17010

    Article  CAS  PubMed  Google Scholar 

  • Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schröter F, Prozorovski T, Lange N, Steffen J, Rieger M, Kuckelkorn U, Aktas O, Kloetzel PM, Krüger E (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142:613–624

    Article  CAS  PubMed  Google Scholar 

  • Shang F, Taylor A (2011) Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51:5–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Article  CAS  PubMed  Google Scholar 

  • Smithers SR, Terry RJ (1965) The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55:695–700

    CAS  PubMed  Google Scholar 

  • Soliman MF, Ibrahim MM (2005) Antischistosomal action of atorvastatin alone and concurrently with medroxyprogesterone acetate on Schistosoma haematobium harboured in hamster: surface ultrastructure and parasitological study. Acta Trop 93:1–9

    Article  CAS  PubMed  Google Scholar 

  • Steffen J, Seeger M, Koch A, Kruger E (2010) Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell 40:147–158

    Article  CAS  PubMed  Google Scholar 

  • Toivola DM, Strnad P, Habtezion A, Omary MB (2010) Intermediate filaments take the heat as stress proteins. Trends Cell Biol 20:79–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira P, Miranda HP, Cerqueira M, Delgado Mde L, Coelho H, Antunes D, Cross JH, da Costa JM (2007) Latent schistosomiasis in Portuguese soldiers. Mil Med 172:144–146

    PubMed  Google Scholar 

  • Wang X, Yen J, Kaiser P, Huang L (2010) Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 3: ra88, doi:10.1126/scisignal.2001232

  • Williams DL, Pierce RJ, Cookson E, Capron A (1992) Molecular cloning and sequencing of glutathione peroxidase from Schistosoma mansoni. Mol Biochem Parasitol 52:127–130

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2013) Schistosomiasis: A major public health problem. [Online] Available from: http://www.who.int/schistosomiasis/en/index.html. Accessed 13 March

  • Wyrsch P, Blenn C, Bader J, Althaus FR (2012) Cell death and autophagy under oxidative stress: Roles of poly(ADP-ribose) polymerases and Ca2+. Mol Cell Biol 32:3541–3553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao SH, Keiser J, Chollet J, Utzinger J, Dong Y, Endriss Y, Vennerstrom JL, Tanner M (2007) In vitro and in vivo activities of synthetic trioxolanes against major human schistosome species. Antimicrob Agents Chemother 51:1440–1445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanaka K, Ishikawa H, Megumi Y, Tokunaga F, Kanie M, Rouault TA, Morishima I, Minato N, Ishimori K, Iwai K (2003) Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Nat Cell Biol 5:336–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CAPES for fellowships and FAPESP for financial support (Processes FAPESP: 2011/50135-4). We thank Olinda Mara Brigato and Elenice Aparecida de Macedo for technical assistance and Maria D. Seabra Ferreira and José Augusto Maulim (Laboratório de Microscopia Eletrônica, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto) for the microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Graciano de Paula.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Expression of SmF10 (Smp_131110.1) on Schistosoma mansoni. Expression analysis in the stage of adult worm submitted to oxidative stress with 300 μM of H2O2 at 120 hours. Expression levels were calibrated according to the comparative 2 − Δ∆Ct method, using the constitutively expressed SmGAPDH as an endogenous control (ANOVA followed by Tukey’s pairwise comparison P < 0.0001). These results are based on three replicates of three independent experiments, being expressed as mean ± standard deviation. *Differ to control (P < 0.0001). (GIF 16 kb)

High resolution image (TIFF 346 kb)

Figure S2

Expression of SmRPN10 on Schistosoma mansoni during oxidative stress. Expression analysis in the stage of adult worm submitted to oxidative stress with 200 μM of H2O2 at 30 minutes, 1 hour, 4 hours and 24 hours. Expression levels were calibrated according to the comparative 2 − Δ∆Ct method, using the constitutively expressed SmGAPDH as an endogenous control (ANOVA followed by Tukey’s pairwise comparison P < 0.0001). These results are based on three replicates of three independent experiments, being expressed as mean ± standard deviation. *Differ to control (P < 0.0001). (GIF 31 kb)

High resolution image (TIFF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, R.G., de Magalhães Ornelas, A.M., Morais, E.R. et al. Biochemical characterization and role of the proteasome in the oxidative stress response of adult Schistosoma mansoni worms. Parasitol Res 113, 2887–2897 (2014). https://doi.org/10.1007/s00436-014-3950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3950-5

Keywords

Navigation