Skip to main content

Advertisement

Log in

Experimental infection of Calomys callosus with atypical strains of Toxoplasma gondii shows gender differences in severity of infection

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

There is a significant genetic diversity of Toxoplasma gondii in Brazil. Two parasite isolates were recently obtained from chickens in Uberlândia, Minas Gerais state, Brazil, namely, TgChBrUD1 and TgChBrUD2. In this study, we investigated Calomys callosus susceptibility to these atypical T. gondii strains. Male and female animals were intraperitoneally infected with tachyzoites and monitored to evaluate body weight change, morbidity, and mortality. Immunohistochemical assay and qPCR were performed to determine the parasitism in liver, spleen, and brain. Our data showed that TgChBrUD2-infected males died earlier than TgChBrUD1-infected males and 100 % of mortality was observed after 10 and 12 days of infection, respectively. Also, TgChBrUD1-infected females died earlier than TgChBrUD1-infected males and 100 % of mortality was observed after 9 and 12 days of infection, respectively. Both strains were able to induce a decrease in body weight of males, but only the TgChBrUD1 strain induced an increase in body weight of females. TgChBrUD2-infected females had significantly higher parasite load in both liver and spleen in comparison to TgChBrUD1-infected females, but no significant difference was found between genders or strains when males were infected. There was higher parasitism in the liver than the brain from both males and females infected with either strain. In conclusion, C. callosus specimens are susceptible to both T. gondii atypical strains with differences between males and females in severity of infection. These findings open new prospects for understanding different aspects of T. gondii infection, including reinfection and vertical transmission with these atypical strains when utilizing this experimental model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbosa BF, Silva DA, Costa IN, Pena JD, Mineo JR, Ferro EA (2007) Susceptibility to vertical transmission of Toxoplasma gondii is temporally dependent on the preconceptional infection in Calomys callosus. Placenta 28(7):624–30

  • Bartley PM, Wright S, Sales J, Chianini F, Buxton D, Innes EA (2006) Long-term passage of tachyzoites in tissue culture can attenuate virulence of Neospora caninum in vivo. Parasitology 135:421–432

    Article  Google Scholar 

  • Beck HP, Blake D, Dardé ML, Felger I, Pedraza-Díaz S, Regidor-Cerrillo J, Gómez-Bautista M, Ortega-Mora LM, Putignani L, Shiels B, Tait A, Weir W (2009) Molecular approaches to diversity of populations of apicomplexan parasites. Int J Parasitol 39(2):175–189

    Article  CAS  PubMed  Google Scholar 

  • Borges MM, Andrade SG, Pilatti CG, Prado JC, Kloetzel JK (1992) Macrophage activation and histopathological findings in Calomys callosus and swiss mice infected with several strains of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 87(4):493–502

    Article  CAS  PubMed  Google Scholar 

  • Brandão GP, Ferreira AM, Melo MN, Vitor RWA (2006) Characterization of Toxoplasma gondii from domestic animals from Minas Gerais. Parasite 13(2):143–149

    Article  PubMed  Google Scholar 

  • Carneiro AC, Andrade GM, Costa JG, Pinheiro BV, Vasconcelos-Santos DV, Ferreira AM, Su C, Januário JN, Vitor RW (2013) Genetic characterization of Toxoplasma gondii revealed highly diverse genotypes for isolates from newborns with congenital toxoplasmosis in southeastern Brazil. J Clin Microbiol 51(3):901–907

    Article  PubMed Central  PubMed  Google Scholar 

  • Cenci-Goga BT, Rossitto PV, Sechi P, Mccrindle CM, Cullor JS (2011) Toxoplasma in animals, food, and humans: an old parasite of new concern. Foodborne Pathog Dis 8(7):751–762

    Article  PubMed  Google Scholar 

  • Chao TC, Van Alten PJ, Walter RJ (1994) Steroid sex hormones and macrophage function: modulation of reactive oxygen intermediates and nitrite release. Am J Reprod Immunol 32:43–52

    Article  CAS  PubMed  Google Scholar 

  • de Souza EM, Rivera MT, Araújo-Jorge TC, de Castro SL (2001) Modulation induced by estradiol in the acute phase of Trypanosoma cruzi infection in mice. Parasitol Res 87(7):513–520

    Article  PubMed  Google Scholar 

  • do Prado JC Jr, Leal MP, Anselmo-Franci JA, de Andrade júniur HF, Kloetzel JK (1997) Influence of female gonadal hormones on the parasitemia of female Calomys callosus infected with the “Y” strain of Trypanosoma cruzi. Parasitol Res 84(2):100–105

    Article  Google Scholar 

  • do Prado JC Jr, Levy AM, Leal MP, Bernard E, Kloetzel JK (1999) Influence of male gonadal hormones on the parasitemia and humoral response of male Calomys callosus infected with the Y strain of Trypanosoma cruzi. Parasitol Res 85(10):826–829

    Article  PubMed  Google Scholar 

  • Dubey JP (2010) Toxoplasmosis of animals and humans. Boca Raton, Florida

    Google Scholar 

  • Dubey JP, Gennari SM, Labruna MB, Camargo LMA, Vianna MCB, Marcet PL, Lehmann T (2006) Characterization of Toxoplasma gondii isolates in free-range chickens from Amazon, Brazil. J Parasitol 92(1):36–40

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Lago EG, Gennari SM, Su C, Jones JL (2012) Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology 139(11):1375–1424

    Article  CAS  PubMed  Google Scholar 

  • Dubremetz JF, Lebrun M (2012) Virulence factors of Toxoplasma gondii. Microbes Infect 14(15):1403–1410

    Article  CAS  PubMed  Google Scholar 

  • Duneau D, Ebert D (2012) Host sexual dimorphism and parasite adaptation. PLoS Biol 10(2):e1001271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elmore SA, Jones JL, Conrad PA, Patton S, Lindsay DS, Dubey JP (2010) Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends Parasitol 26(4):190–196

    Article  PubMed  Google Scholar 

  • Favoreto-Junior S, Ferro EAV, Clemente D, Silva DAO, Mineo JR (1998) Experimental infection of Calomys callosus (Rodentia, Cricetidae) by Toxoplasma gondii. Mem Inst Oswaldo Cruz 93(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Ferro EAV, Bevilacqua E, Favoreto-Junior S, Silva DAO, Mortara RA, Mineo JR (1999) Calomys callosus (Rodentia: Cricetidae) trophoblast cells as host cells to Toxoplasma gondii in early pregnancy. Parasitol Res 85:647–654

    Article  CAS  PubMed  Google Scholar 

  • Ferro EAV, Silva DAO, Bevilacqua E, Mineo JR (2002) Effect of Toxoplasma gondii infection kinetics on trophoblast cell population in Calomys callosus, a model of congenital toxoplasmosis. Infect Immun 70:7089–7094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flegr J, Lindová J, Kodym P (2008) Sex-dependent toxoplasmosis-associated differences in testosterone concentration in humans. Parasitology 135(4):427–431

    CAS  PubMed  Google Scholar 

  • Franco PS, Silva DA, Costa IN, Gomes AO, Silva AL, Pena JD, Mineo JR, Ferro EA (2011) Evaluation of vertical transmission of Toxoplasma gondii in Calomys callosus model after reinfection with heterologous and virulent strain. Placenta 32:116–120

    Article  CAS  PubMed  Google Scholar 

  • Herrmann DC, Bärwald A, Maksimov A, Pantchev N, Vrhovec MG, Conraths FJ, Schares G (2012) Toxoplasma gondii sexual cross in a single naturally infected feline host: generation of highly mouse-virulent and avirulent clones, genotypically different from clonal types I, II and III. Vet Res 43:39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Homan WL, Vercammen M, De Braekeleer J, Verschueren H (2000) Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol 30(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172(6):1561–1566

    Article  CAS  PubMed  Google Scholar 

  • Kankova S, Kodym P, Flegr J (2011) Direct evidence of Toxoplasma-induced changes in serum testosterone in mice. Exp Parasitol 128(3):181–183

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Fux B, Su C, Dubey JP, Darde ML, Ajioka JW, Rosenthal BM, Sibley LD (2007) Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome. Proc Natl Acad Sci U S A 104(37):14872–14877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan A, Dubey JP, Su C, Ajioka JW, Rosenthal BM, Sibley LD (2011a) Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America. Int J Parasitol 41(6):645–655

    Article  PubMed Central  PubMed  Google Scholar 

  • Khan A, Miller N, Roos DS, Dubey JP, Ajzenberg D, Dardé ML, Ajioka JW, Rosenthal B, Sibley LD (2011b) A monomorphic haplotype of chromosome Ia is associated with widespread success in clonal and nonclonal populations of Toxoplasma gondii. mBio 2(6):e00228–11

    Article  PubMed Central  PubMed  Google Scholar 

  • Liesenfeld O, Nguyen TA, Pharke C, Suzuki Y (2001) Importance of gender and sex hormones in regulation of susceptibility of the small intestine to peroral infection with Toxoplasma gondii tissue cysts. J Parasitol 87(6):1491–1493

    Article  CAS  PubMed  Google Scholar 

  • Lourenço AM, Levy AM, Caetano LC, Carraro Abrahão AA, Prado JC Jr (2008) Influence sexual dimorphism on the persistence of blood parasites in infected Calomys callosus. Res Vet Sci 85(3):515–521

    Article  PubMed  Google Scholar 

  • Munoz M, Liesenfeld O, Heimesaat MM (2011) Immunology of Toxoplasma gondii. Immunol Rev 240(1):269–285

    Article  CAS  PubMed  Google Scholar 

  • Nava-Castro K, Hernández-Bello R, Muñiz-Hernández S, Camacho-Arroyo I, Morales-Montor J (2012) Sex steroids, immune system, and parasitic infections: facts and hypotheses. Ann N Y Acad Sci 1262:16–26

    Article  CAS  PubMed  Google Scholar 

  • Pena HFJ, Gennari SM, Dubey JP, Su C (2008) Population structure and mouse-virulence of Toxoplasma gondii in Brazil. Int J Parasitol 38(5):561–569

    Article  CAS  PubMed  Google Scholar 

  • Pereira MF, Silva DAO, Ferro EAV, Jr M (1999) Acquired and congenital ocular toxoplasmosis experimentally induced in Calomys callosus (Rodentia, Cricetidae). Mem Inst Oswaldo Cruz 94(1):103–114

    Article  Google Scholar 

  • Pinto AC, Caetano LC, Levy AM, Fernandes RD, Santos CD, do Prad JC Jr (2010) Experimental Chagas’ disease in orchiectomized Calomys callosus infected with the CM strain of Trypanosoma cruzi. Exp Parasitol 124(2):147–152

    Article  PubMed  Google Scholar 

  • Roberts CW, Cruickshank SM, Alexander J (1995) Sex-determined resistance to Toxoplasma gondii is associated with temporal differences in cytokine production. Infect Immun 63(7):2549–2555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts CW, Walker W, Alexander J (2001) Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev 14(3):476–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shwab EK, Zhu XQ, Majumdar D, Pena HFJ, Gennari SM, Dubey JP, Su C (2013) Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology. doi:10.1017/S0031182013001844

    PubMed  Google Scholar 

  • Sibley LD (2011) Invasion and intracellular survival by protozoan parasites. Immunol Rev 240(1):72–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sibley LD, Boothroyd JC (1992) Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 359(6390):82–85

    Article  CAS  PubMed  Google Scholar 

  • Su C, Khan A, Zhou P, Majumdar D, Ajzenberg D, Darde ML, Zhu XQ, Ajioka JW, Rosenthal BM, Dubey JP, Sibley LD (2012) Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc Natl Acad Sci U S A 109(15):5844–5849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wahab T, Edvinsson B, Palm D, Lindh J (2010) Comparison of the AF146527 and B1 repeated elements, two real-time PCR targets used for detection of Toxoplasma gondii. J Clin Microbiol 48(2):591–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker W, Roberts CW, Ferguson DJ, Jebbari H, Alexander J (1997) Innate immunity to Toxoplasma gondii is influenced by gender and is associated with differences in interleukin-12 and gamma interferon production. Infect Immun 65(3):1119–1121

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Brazilian Research Funding Agencies (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa de Minas Gerai (FAPEMIG) and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloisa Amália Vieira Ferro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, P.S., Ribeiro, M., Lopes-Maria, J.B. et al. Experimental infection of Calomys callosus with atypical strains of Toxoplasma gondii shows gender differences in severity of infection. Parasitol Res 113, 2655–2664 (2014). https://doi.org/10.1007/s00436-014-3920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3920-y

Keywords

Navigation