Advertisement

Parasitology Research

, Volume 113, Issue 6, pp 2363–2373 | Cite as

Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae)

  • Kaliyan Veerakumar
  • Marimuthu GovindarajanEmail author
  • Mohan Rajeswary
  • Udaiyan Muthukumaran
Original Paper

Abstract

Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. In the present study activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using Helitropium indicum plant leaves against late third instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (30, 60, 90, 120, and 150 μg/mL) were tested against the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The synthesized AgNPs from H. indicum were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV–Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis, transmission electron microscopy, and histogram. The synthesized AgNPs showed larvicidal effects after 24 h of exposure. Considerable mortality was evident after the treatment of H. indicum for all three important vector mosquitoes. The LC50 and LC90 values of H. indicum aqueous leaf extract appeared to be effective against A. stephensi (LC50, 68.73 μg/mL; LC90, 121.07 μg/mL) followed by A. aegypti (LC50, 72.72 μg/mL; LC90, 126.86 μg/mL) and C. quinquefasciatus (LC50, 78.74 μg/mL; LC90, 134.39 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 18.40 and 32.45 μg/mL, A. aegypti had LC50 and LC90 values of 20.10 and 35.97 μg/mL, and C. quinquefasciatus had LC50 and LC90 values of 21.84 and 38.10 μg/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H. indicum and green synthesis of silver nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

Keywords

AgNPs Larvicidal activity Heliotropium indicum Mosquitoes 

Notes

Acknowledgments

The authors would like to thank the Professor and Head of the Department of Zoology, Annamalai University, for the laboratory facilities provided. The authors would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry and thankful to Dr. S. Ramesh, Professor and Head, Veterinary College, Vepery, Chennai for TEM analysis.

References

  1. Aarthi N, Vasugi C, Panneerselvam C, Prasana Kumar K, Madhiyazhagan P, Murugan K (2011) Toxicity and Smoke repellency effect of Mimosa pudica L. against the malarial vector Anopheles stephensi (Diptera: Culicidae). The Bioscan 6(2):211–214Google Scholar
  2. Agalya Priyadarshini K, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang J-S, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006CrossRefGoogle Scholar
  3. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86PubMedCrossRefGoogle Scholar
  4. Aiub CAF, Coelho ECA, Sodre E, Pinto LFR, Felzenszwalb I (2002) Genotoxic evaluation of the organophosphorous pesticide temephos. Genet Mol Res 101:159–166Google Scholar
  5. Amerasan D, Murugan K, Kovendan K, Mahesh Kumar P, Panneerselvam C, Subramaniam J, John William S, Hwang JS (2012) Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res 111(5):1953–1964PubMedCrossRefGoogle Scholar
  6. Anjali CH, SudheerKhan S, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936PubMedCrossRefGoogle Scholar
  7. Barik TK, Kamaraju R, Gowawami A (2012) Silica nanoparticles: a potential new insecticide for mosquito vector control. Parasitol Res 111(3):1075–1083PubMedCrossRefGoogle Scholar
  8. Batabyal L, Sharma P, Mohan L, Maurya P, Srivastava CN (2007) Larvicidal efficiency of certain seed extracts against Anopheles stephensi, with reference to Azadirachta indica. J Asia Pacific Entomol 10:1–5CrossRefGoogle Scholar
  9. Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in north-eastern Tanzania: alternative approaches. Physiotherapy 89:743–749CrossRefGoogle Scholar
  10. Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009) Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour Technol 100:452–456PubMedCrossRefGoogle Scholar
  11. Elango G, Bagavan A, Kamaraj C, Zahir AA, Rahuman AA (2009) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105(6):1567–1576PubMedCrossRefGoogle Scholar
  12. Elumalai EK, Prasad TN, Hemachandran J, Therasa VS, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2:549–554Google Scholar
  13. Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press, London, pp 68–72Google Scholar
  14. Govindarajan M (2010) Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14(2):107–111PubMedGoogle Scholar
  15. Govindarajan M (2011a) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4(2):106–111PubMedCrossRefGoogle Scholar
  16. Govindarajan M (2011b) Evaluation of Andrographis paniculata Burm.f. (Family: Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pacific J Trop Med 4:176–181CrossRefGoogle Scholar
  17. Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110(5):1607–1620PubMedCrossRefGoogle Scholar
  18. Govindarajan M, Jebanesan A, Pushpanathan T (2008a) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292PubMedCrossRefGoogle Scholar
  19. Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K (2008b) Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 103(3):691–695PubMedCrossRefGoogle Scholar
  20. Guhabakshi DN, Sensarma P, Pal DC (1999) A lexicon of medicinal plant in India, New Delhi p.333Google Scholar
  21. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104CrossRefGoogle Scholar
  22. James AA (1992) Mosquito molecular genetics: the hands that feed bite back. Science 257:37–38PubMedCrossRefGoogle Scholar
  23. Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heart leaf moonseed plant. Tinospora cordifolia Miers. Parasitol Res 109(1):185–194PubMedCrossRefGoogle Scholar
  24. Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171PubMedCrossRefGoogle Scholar
  25. Karthik L, Gaurav K, Bhaskara Rao KV, Rajakumar G, Abdul Rahuman A (2011) Larvicidal, repellent and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus. Parasitol Res 108(6):1447–1455PubMedCrossRefGoogle Scholar
  26. Kovendan K, Arivoli S, Maheshwaran R, Baskar K, Vincent S (2012a) Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 111(3):1025–1035PubMedCrossRefGoogle Scholar
  27. Kovendan K, Murugan K, Vincent S, Barnard DR (2012b) Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Asian Pac J Trop Med 5(4):299–305PubMedCrossRefGoogle Scholar
  28. Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 85(10):1301–1309CrossRefGoogle Scholar
  29. Lanisnik RT, Moeller G, Thole HH, Zakelj-Mavric M, Adamski J (1999) A novel 17β-hydroxysteroid dehydrogenase in the fungus Cochliobolus lunatus: new insights into the evolution of steroid hormone signaling. Biochem J 337:425–431CrossRefGoogle Scholar
  30. Lee SE (2000) Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. J Am Mosq Control Assoc 16:245–247PubMedGoogle Scholar
  31. Marimuthu S, Rahuman AA, Govindasamy R, Thirunavukkarasu S, Arivarasan VK, Chidambaram J, Asokan B, Zahir AA, Elango G, Chinnaperumal K (2010) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549PubMedCrossRefGoogle Scholar
  32. Minjas JN, Sarda RK (1986) Laboratory observations on the toxicity of Swartzia madagascariens (Leguminaceae) extract to mosquito larvae. Trans R Soc Trop Med Hyg 80:460–461PubMedCrossRefGoogle Scholar
  33. Mohan L, Sharma P, Srivastava CN (2005) Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 26:399–401PubMedGoogle Scholar
  34. Mullai K, Jebanesan A (2007) Larvicidal, ovicidal and repellent activities of the leaf extract of two cucurbitacious plants against filarial vector Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 24(1):1–6PubMedGoogle Scholar
  35. Nadkarni AK (2007) Indian Materia Medica, 1st edn. Popular Prakashan Pvt. Ltd, Mumbai, p 67Google Scholar
  36. Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res 3(6):208–217Google Scholar
  37. Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111(6):2241–2251PubMedCrossRefGoogle Scholar
  38. Patil RH, Patil SV, Patil UK, Bhat JA, Rajput J, Chaudhry R (2008) Biotransformation of Rifamycin B to Rifamycin S with free and immobilized cells of Curvularia lunata. J Appl Pure Microbiol 2(1):111–114Google Scholar
  39. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunkhe BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non target fish Poicillia reticulata. Parasitol Res 111(2):555–562PubMedCrossRefGoogle Scholar
  40. Peng Z, Yang J, Wang H, Simons FER (1999) Production and characterization of monoclonal antibodies to two new mosquito Aedes aegypti salivary proteins. Insect Biochem Mol Biol 29:909–914PubMedCrossRefGoogle Scholar
  41. Pinheiro VCS, Tader WP (2002) Evaluation of the residual effect of temephos on Aedes aegypti (Diptera: Culicidae) larvae in artificial containers in Manaus. Amazonas state. Brazil Cad Saude Publica 18:1529–1535CrossRefGoogle Scholar
  42. Pohilt AM, Rezende AR, Lopes Baldin EL, Lopes NP, de Andrade Neto VF (2011) Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases—a review. Planta Med 77(6):618–630CrossRefGoogle Scholar
  43. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn G. Don and their antiplasmodial activities. Asian-Pacific J Trop Biomed 2(7):574–580CrossRefGoogle Scholar
  44. Prabakar K, Jebanesan A (2004) Larvicidal efficacy of some Cucurbitacious plant leaf extracts against Culex quinquefasciatus (Say). Bioresour Technol 95(1):113–114PubMedCrossRefGoogle Scholar
  45. Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hitra against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006PubMedCrossRefGoogle Scholar
  46. Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 23(2):208–212PubMedGoogle Scholar
  47. Pushpanathan T, Jebanesan A, Govindarajan M (2008a) The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 102:1289–1291PubMedCrossRefGoogle Scholar
  48. Pushpanathan T, Jebanesan A, Govindarajan M, Samithurai K (2008b) Larvicidal activity of the extract of Citrullus colocynthis (L) Schred against vector mosquitoes. In: Tyagi BK (ed) Vectors-borne diseases: epidemeology and control. Scientific Publishers, Jodhpur, pp pp 67–72Google Scholar
  49. Raghavendra K, Subbarao SK (2002) Chemical insecticide in malaria vector control in India. ICMR Bull 32:93–99Google Scholar
  50. Rahman SJ, Sharma SK, Rajagopal R (1989) Manual on entomological surveillance of vector borne diseases. NICD, New DelhiGoogle Scholar
  51. Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203PubMedCrossRefGoogle Scholar
  52. Raut RW, Niranjan S, Kolekar Jaya R, Lakkakula Vijay D, Mendhulkar SB, Kashid S (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L) Pierre. Nano Micro Lett 2:106–113CrossRefGoogle Scholar
  53. Sabina B, Ljerka L, Branka K, Nada K, Radovan K (2008) Progesterone-induced gene expression profile of the filamentous fungus Cochliobolus lunatus. Acta Chim Slov 55:93–100Google Scholar
  54. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831PubMedCrossRefGoogle Scholar
  55. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702PubMedCrossRefGoogle Scholar
  56. Santos SRL, Silva VB, Barbosa JDF, Santos RLC, deSousa DM, Cavalcanti SCH (2010) Toxic effects on and structure-toxicity relationships of phenylpropanoids, terpenes, and related compounds in Aedes aegypti larvae. Vector-Borne Zoonotic Dis 10:1049–1054PubMedCrossRefGoogle Scholar
  57. Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation induced silver nanoparticles as mosquito larvicides. J Applied Sci 10(23):3132–3136, ISSN 1812–5654CrossRefGoogle Scholar
  58. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631PubMedCrossRefGoogle Scholar
  59. Sharma P, Mohan L, Srivastava CN (2009) Amaranthus oleracea and Euphorbia hirta: natural potential larvicidal agents against the urban Indian malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 106(1):171–176PubMedCrossRefGoogle Scholar
  60. Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184PubMedCrossRefGoogle Scholar
  61. Tea Lanisc NRN, Gabriele M, Hubert HT, Marija ZCAM, Jerzy A (1999) A novel 17β-hydroxysteroid dehydrogenase in the fungus Cochliobolus lunatus: new insights into the evolution of steroid hormone signaling. Biochem J 337:425–431CrossRefGoogle Scholar
  62. Thirunavukkarasu S, Rahuman AA, Govindasamy R, Marimuthu S, Asokan B, Chidambaram J, Zahir AA, Elango G, Chinnaperumal K (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol res 108(3):693–702Google Scholar
  63. Traboulsi AF, Taoubi K, El-Haj S, Bessiere JM, Ramal S (2002) Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 58:491–495PubMedCrossRefGoogle Scholar
  64. Veerekumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(12):4073–4085CrossRefGoogle Scholar
  65. World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, 2005; WHO/CDS/WHOPES/GCDPP/1.3Google Scholar
  66. World Health Organization 2009. Available from: http://www.Who.int/mediacentre/factsheets/fs117/en/index.html. Accessed 16 Feb 2010

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kaliyan Veerakumar
    • 1
  • Marimuthu Govindarajan
    • 1
    Email author
  • Mohan Rajeswary
    • 1
  • Udaiyan Muthukumaran
    • 1
  1. 1.Unit of Vector Biology and Phytochemistry, Department of ZoologyAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations