Parasitology Research

, Volume 113, Issue 6, pp 2161–2168 | Cite as

Ketanserin, an antidepressant, exerts its antileishmanial action via inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) enzyme of Leishmania donovani

  • Sushma SinghEmail author
  • Neeradi Dinesh
  • Preet Kamal Kaur
  • Baigadda Shamiulla
Original Paper


Leishmaniasis is one of the major health problems existing globally. The current chemotherapy for leishmaniasis presents several drawbacks like toxicity and increased resistance to existing drugs, and hence, there is a necessity to look out for the novel drug targets and new chemical entities. Current trend in drug discovery arena is the “repurposing” of old drugs for the treatment of diseases. In the present study, an antidepressant, ketanserin, was found lethal to both Leishmania donovani promastigotes and intracellular amastigotes with no apparent toxicity to the cells. Ketanserin killed promastigotes and amastigotes with an IC50 value of 37 μM and 28 μM respectively, in a dose-dependent manner. Ketanserin was found to inhibit L. donovani recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) enzyme with an IC50 value of 43 μM. Ketanserin treated promastigotes were exogenously supplemented with sterols like ergosterol and cholesterol to rescue cell death. Ergosterol could recover the inhibition partially, whereas cholesterol supplementation completely failed to rescue the inhibited parasites. Further, HMGR-overexpressing parasites were generated by transfecting Leishmania promastigotes with an episomal pspα hygroα-HMGR construct. Wild-type and HMGR overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. The HMGR overexpressors showed twofold resistance to ketanserin. These observations suggest that the lethal effect of ketanserin is due to inhibition of HMGR, the rate-limiting enzyme of the ergosterol biosynthetic pathway. Since targeting of the sterol biosynthetic pathway enzymes may be useful therapeutically, the present study may have implications in treatment of leishmaniasis.


Leishmania Ketanserin HMGR Ergosterol Cholesterol 



The authors are grateful for the financial support provided by the Ministry of Chemicals and Fertilizers, India. Special thanks to the Director of NIPER for the financial support. The authors thank Dr. Peter Edwards, UCLA Laboratory (Los Angeles, CA) for providing anti-rat HMGR antibody and Prof. R. Madhubala, School of Life Sciences, JNU, India for providing the pspα hygroα construct. Special thanks to Mr. Neerupudi Kishor Babu for critical reading of the manuscript.


  1. Aviram M, Fuhrman B, Maor I, Brook GJ (1992) Serotonin increases macrophage uptake of oxidized low density lipoprotein. Eur J Clin Chem Clin Biochem 30:55–61PubMedGoogle Scholar
  2. Baiocco P, Colotti G, Franceschini S, Ilari A (2009) Molecular basis of antimony treatment in leishmaniasis. J Med Chem 52(8):2603–2612PubMedCrossRefGoogle Scholar
  3. Barrios-Gonzalez J, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85(4):869–883PubMedCrossRefGoogle Scholar
  4. Benson TJ, McKie JH, Garforth J, Borges A, Fairlamb AH, Douglas KT (1992) Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. Biochem J 286(Pt 1):9–11PubMedCentralPubMedGoogle Scholar
  5. Berman J (2003) Current treatment approaches to leishmaniasis. Curr Opin Infect Dis 16(5):397–401PubMedCrossRefGoogle Scholar
  6. Calogeropoulou T, Angelou P, Detsi A, Fragiadaki I, Scoulica E (2008) Design and synthesis of potent antileishmanial cycloalkylidene-substituted ether phospholipid derivatives. J Med Chem 51(4):897–908PubMedCrossRefGoogle Scholar
  7. Chen GZ, Foster L, Bennett JL (1990) Antischistosomal action of mevinolin: evidence that 3-hydroxy-methylglutaryl-coenzyme a reductase activity in Schistosoma mansoni is vital for parasite survival. Naunyn Schmiedebergs Arch Pharmacol 342:477–482PubMedCrossRefGoogle Scholar
  8. Corral MJ, Gonzalez-Sanchez E, Cuquerella M, Alunda JM (2014) In vitro synergistic effect of amphotericin B and allicin on Leishmania donovani and L. infantum. Antimicrob Agents Chemother 58(3):1596–1602PubMedCrossRefGoogle Scholar
  9. Cortez E, Stumbo AC, Oliveira M, Barbosa HS, Carvalho L (2009) Statins inhibit Toxoplasma gondii multiplication in macrophages in vitro. Int J Antimicrob Agents 33(2):185–186PubMedCrossRefGoogle Scholar
  10. Croft SL, Seifert K, Yardley V (2006) Current scenario of drug development for leishmaniasis. Indian J Med Res 123(3):399–410PubMedGoogle Scholar
  11. Dinesh N, Pallerla DS, Kaur PK, Kishore Babu N, Singh S (2014) Exploring Leishmania donovani 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) as a potential drug target by biochemical, biophysical and inhibition studies. Microb Pathog 66:14–23PubMedCrossRefGoogle Scholar
  12. Dube A, Singh N, Saxena A, Lakshmi V (2007) Antileishmanial potential of a marine sponge, Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitol Res 101(2):317–324PubMedCrossRefGoogle Scholar
  13. Garcia-Pelayo MC, Garcia-Peregrin E, Martinez-Cayuela M (2004) Differential translational effects of myristic acid and eicosapentaenoic acid on 3-hydroxy-3-methylglutaryl-CoA reductase from Reuber H35 hepatoma cells. Exp Biol Med (Maywood) 229(8):781–786Google Scholar
  14. Ginger ML, Chance ML, Sadler IH, Goad LJ (2001) The biosynthetic incorporation of the intact leucine skeleton into sterol by the trypanosomatid Leishmania mexicana. J Biol Chem 276:11674–11682PubMedCrossRefGoogle Scholar
  15. Hegenscheid B, Presber HW (1990) Antiprotozoal effects of benzodiazepine derivatives. Angew Parasitol 31(4):231–237PubMedGoogle Scholar
  16. Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ, Ipsen JH (2006) Universal behavior of membranes with sterols. Biophys J 90:1639–1649PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hurtado-Guerrrero R, Pena-Diaz J, Montalvetti A, Ruiz-Perez LM, Gonzalez-Pacanowska D (2002) Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase. FEBS Lett 510(3):141–144PubMedCrossRefGoogle Scholar
  18. Jain SK, Sahu R, Walker LA, Tekwani BL (2012) A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line. J Vis Exp 70:e4054Google Scholar
  19. Kessler RL, Soares MJ, Probst CM, Krieger MA (2013) Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death. PLoS One 8(1):e55497PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kubera M, Kenis G, Bosmans E, Kajta M, Basta-Kaim A, Scharpe S, Budziszewska B, Maes M (2004) Stimulatory effect of antidepressants on the production of IL-6. Int Immunopharmacol 4(2):185–192PubMedCrossRefGoogle Scholar
  21. Kulkarni MM, Reddy N, Gude T, McGwire BS (2013) Voriconazole suppresses the growth of Leishmania species in vitro. Parasitol Res 112(5):2095–2099Google Scholar
  22. Lau WK, Chan SC, Law AC, Ip MS, Mak JC (2012) The role of MAPK and Nrf2 pathways in ketanserin-elicited attenuation of cigarette smoke-induced IL-8 production in human bronchial epithelial cells. Toxicol Sci 125(2):569–577PubMedCrossRefGoogle Scholar
  23. Macreadie IG, Johnson G, Schlosser T, Macreadie PI (2006) Growth inhibition of Candida species and Aspergillus fumigatus by statins. FEMS Microbiol Lett 262(1):9–13PubMedCrossRefGoogle Scholar
  24. Montalvetti A, Pena-Diaz J, Hurtado R, Ruiz-Perez LM, Gonzalez-Pacanowska D (2000) Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase. Biochem J 349:27–34PubMedCentralPubMedCrossRefGoogle Scholar
  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  26. Mukherjee S, Mukherjee B, Mukhopadhyay R, Naskar K, Sundar S, Dujardin JC, Das AK, Roy S (2012) Imipramine is an orally active drug against both antimony sensitive and resistant Leishmania donovani clinical isolates in experimental infection. PLoS Negl Trop Dis 6(12):e1987PubMedCentralPubMedCrossRefGoogle Scholar
  27. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366(9496):1561–1577PubMedCrossRefGoogle Scholar
  28. Palit P, Ali N (2008) Oral therapy with sertraline, a selective serotonin reuptake inhibitor, shows activity against Leishmania donovani. J Antimicrob Chemother 61(5):1120–1124PubMedCrossRefGoogle Scholar
  29. Palumbo E (2009) Current treatment for cutaneous leishmaniasis: a review. Am J Ther 16(2):178–182PubMedCrossRefGoogle Scholar
  30. Pandey BD, Pandey K, Kaneko O, Yanagi T, Hirayama K (2009) Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg 80(4):580–582PubMedGoogle Scholar
  31. Papadopoulou B, Roy G, Ouellette M (1992) A novel antifolate resistance gene on the amplified H circle of Leishmania. EMBO J 11(10):3601–3618PubMedCentralPubMedGoogle Scholar
  32. Parquet V, Henry M, Wurtz N, Dormoi J, Briolant S, Gil M, Baret E, Amalvict R, Rogier C, Pradines B (2010) Atorvastatin as a potential anti-malarial drug: in vitro synergy in combinational therapy with quinine against Plasmodium falciparum. Malar J 9:139PubMedCentralPubMedCrossRefGoogle Scholar
  33. Rozman D, Monostory K (2010) Perspectives of the non-statin hypolipidemic agents. Pharmacol Ther 127(1):19–40PubMedCrossRefGoogle Scholar
  34. Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 6(11):849–854PubMedCrossRefGoogle Scholar
  35. Suzukawa M, Nakamura H (1990a) Effect of ketanserin tartrate on HMG CoA reductase and LDL receptor activity in cultured human skin fibroblasts. Eur J Clin Pharmacol 39:217–220PubMedCrossRefGoogle Scholar
  36. Suzukawa M, Nakamura H (1990b) Effects of ketanserin tartrate on 3-hydroxy, 3-methylglutaryl coenzyme A reductase activity in cultured human skin fibroblasts. Cardiovasc Drugs Ther 4(1):69–72PubMedCrossRefGoogle Scholar
  37. Wanderley DS, Rodrigues JCF (2009) Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdiscip Perspect Infect Dis 2009:1–19Google Scholar
  38. Wang D, Zhou X, Hong Y (2013) Effects of a combination of ketanserin and propranolol on inflammatory hyperalgesia in rats. Eur J Pharmacol 721(1–3):126–132PubMedCrossRefGoogle Scholar
  39. Wenting GJ, Woittiez AJ, Man in’t Veld AJ, Schalekamp MA (1984) 5-HT, alpha-adrenoceptors, and blood pressure. Effects of ketanserin in essential hypertension and autonomic insufficiency. Hypertension 6(1):100–109PubMedCrossRefGoogle Scholar
  40. Woittiez AJ, Wenting GJ, van den Meiracker AH, Ritsema van Eck HJ, Man in’t Veld AJ, Zantvoort FA, Schalekamp MA (1986) Chronic effect of ketanserin in mild to moderate essential hypertension. Hypertension 8(2):167–173PubMedCrossRefGoogle Scholar
  41. Zilberstein D, Dwyer DM (1984) Antidepressants cause lethal disruption of membrane function in the human protozoan parasite Leishmania. Science 226:977–979PubMedCrossRefGoogle Scholar
  42. Zilberstein D, Liveanu V, Gepstein A (1990) Tricyclic drugs reduce proton motive force in Leishmania donovani promastigotes. Biochem Pharmacol 39:935–940PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sushma Singh
    • 1
    Email author
  • Neeradi Dinesh
    • 1
  • Preet Kamal Kaur
    • 1
  • Baigadda Shamiulla
    • 1
  1. 1.Department of BiotechnologyNational Institute of Pharmaceutical Education and Research, SAS NagarMohaliIndia

Personalised recommendations