Skip to main content

Advertisement

Log in

Simultaneous priming with DNA encoding Sm-p80 and boosting with Sm-p80 protein confers protection against challenge infection with Schistosoma mansoni in mice

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Prophylactic efficacy of Sm-p80 was tested in the mouse model using DNA priming and boosting with protein approach. However, the novelty of the approach utilized in this study is that both the DNA priming and protein boosting was performed on a single day and no further vaccine inoculations were given to mice; the animals were challenged 1 month after the initial vaccine administration. Using this approach, significant reduction in worm burden (33 to 57 %) and marked decrease in egg retention in tissues (34 to 66 %) was observed. Robust antibody titers and upregulation of cytokines (IL-1α/β, IL-12α, and IFN-γ) appears to correlate with the protection. This approach of administering vaccine on a single day could be greatly helpful in the field setting because it will eliminate the compliance issues that may arise with multiple boosters that may be required for optimal efficacy for some vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad G, Zhang W, Torben W, Damian RT, Wolf RF, White GL, Chavez-Suarez M, Kennedy RC, Siddiqui AA (2009a) Protective and antifecundity effects of Sm-p80-based DNA vaccine formulation against Schistosoma mansoni in a nonhuman primate model. Vaccine 27:2830–2837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmad G, Zhang W, Torben W, Haskins C, Diggs S, Noor Z, Le L, Siddiqui AA (2009b) Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine. Parasitol Res 105:1767–1777

    Article  PubMed Central  PubMed  Google Scholar 

  • Ahmad G, Zhang W, Torben W, Ahrorov A, Damian RT, Wolf RF, White GL, Carey DW, Mwinzi PN, Ganley-Leal L, Kennedy RC, Siddiqui AA (2011) Preclinical prophylactic efficacy testing of Sm-p80-based vaccine in a nonhuman primate model of Schistosoma mansoni infection and immunoglobulin G and E responses to Sm-p80 in human serum samples from an area where schistosomiasis is endemic. J Infect Dis 204:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Bergquist R (1990) Prospects of vaccination against schistosomiasis. Scand J Infect Dis Suppl 76:60–71

    CAS  PubMed  Google Scholar 

  • Bergquist R, Al-Sherbiny M, Barakat R, Olds R (2002) Blueprint for schistosomiasis vaccine development. Acta Trop 82:183–192

    Article  PubMed  Google Scholar 

  • Bergquist R, Utzinger J, McManus DP (2008) Trick or treat: the role of vaccines in integrated schistosomiasis control. PLoS Negl Trop Dis 2:e244

    Article  PubMed Central  PubMed  Google Scholar 

  • 'Dara AA, Skelly PJ, Walker CM, Harn DA (2003) A DNA-prime/protein-boost vaccination regimen enhances Th2 immune responses but not protection following Schistosoma mansoni infection. Parasite Immunol 25:429–437

    Article  Google Scholar 

  • El Ridi R (1998) More on the search for a schistosomiasis vaccine. Parasitol Today 14:436

    Article  PubMed  Google Scholar 

  • Junqueira-Kipnis AP, de Oliveira FM, Trentini MM, Tiwari S, Chen B, Resende DP, Silva BD, Chen M, Tesfa L, Jacobs WR Jr, Kipnis A (2013) Prime-boost with Mycobacterium smegmatis recombinant vaccine improves protection in mice infected with Mycobacterium tuberculosis. PLoS One 8:e78639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu S (2009) Heterologous prime-boost vaccination. Curr Opin Immunol 21:346–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu M, Xia ZY, Bao L (2013) Enhancement of antimycobacterial Th1-cell responses by a Mycobacterium bovis BCG prime-protein boost vaccination strategy. Cell Immunol 285:111–117

    Article  CAS  PubMed  Google Scholar 

  • Lustigman S, Prichard RK, Gazzinelli A, Grant WN, Boatin BA, McCarthy JS, Basanez MG (2012) A research agenda for helminth diseases of humans: the problem of helminthiases. PLoS Negl Trop Dis 6:e1582

    Article  PubMed Central  PubMed  Google Scholar 

  • McManus DP, Loukas A (2008) Current status of vaccines for schistosomiasis. Clin Microbiol Rev 21:225–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nyindo M, Farah IO (1999) The baboon as a non-human primate model of human schistosome infection. Parasitol Today 15:478–482

    Article  CAS  PubMed  Google Scholar 

  • Prichard RK, Basanez MG, Boatin BA, McCarthy JS, Garcia HH, Yang GJ, Sripa B, Lustigman S (2012) A research agenda for helminth diseases of humans: intervention for control and elimination. PLoS Negl Trop Dis 6:e1549

    Article  PubMed Central  PubMed  Google Scholar 

  • Radosevic K, Rodriguez A, Lemckert A, Goudsmit J (2009) Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev Vaccines 8:577–592

    Article  CAS  PubMed  Google Scholar 

  • Rollinson D, Knopp S, Levitz S, Stothard JR, Tchuem Tchuente LA, Garba A, Mohammed KA, Schur N, Person B, Colley DG, Utzinger J (2013) Time to set the agenda for schistosomiasis elimination. Acta Trop 128:423–440

    Article  PubMed  Google Scholar 

  • Siddiqui AA, Zhou Y, Podesta RB, Karcz SR, Tognon CE, Strejan GH, Dekaban GA, Clarke MW (1993) Characterization of Ca(2+)-dependent neutral protease (calpain) from human blood flukes, Schistosoma mansoni. Biochim Biophys Acta 1181:37–44

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui AA, Ahmad G, Damian RT, Kennedy RC (2008) Experimental vaccines in animal models for schistosomiasis. Parasitol Res 102:825–833

    Article  PubMed  Google Scholar 

  • Siddiqui AA, Siddiqui BA, Ganley-Leal L (2011) Schistosomiasis vaccines. Hum Vaccin 7:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Tallima H, Salah M, Guirguis FR, El RR (2009) Transforming growth factor-beta and Th17 responses in resistance to primary murine schistosomiasis mansoni. Cytokine 48:239–245

    Article  CAS  PubMed  Google Scholar 

  • Terer CC, Bustinduy AL, Magtanong RV, Muhoho N, Mungai PL, Muchiri EM, Kitron U, King CH, Mutuku FM (2013) Evaluation of the health-related quality of life of children in schistosoma haematobium-endemic communities in Kenya: a cross-sectional study. PLoS Negl Trop Dis 7:e2106

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA (2007) Immunopathology of schistosomiasis. Immunol Cell Biol 85:148–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young BW, Podesta RB (1986) Complement and 5-HT increase phosphatidylcholine incorporation into the outer bilayers of Schistosoma mansoni. J Parasitol 72:802–803

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ahmad G, Torben W, Noor Z, Le L, Damian RT, Wolf RF, White GL, Chavez-Suarez M, Podesta RB, Kennedy RC, Siddiqui AA (2010a) Sm-p80-based DNA vaccine provides baboons with levels of protection against Schistosoma mansoni infection comparable to those achieved by the irradiated cercarial vaccine. J Infect Dis 201:1105–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Ahmad G, Torben W, Siddiqui AA (2010b) Sm-p80-based DNA vaccine made in a human use approved vector VR1020 protects against challenge infection with Schistosoma mansoni in mouse. Parasite Immunol 32:252–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ahmad G, Torben W, Siddiqui AA (2011) Schistosoma mansoni antigen Sm-p80: prophylactic efficacy of a vaccine formulated in human approved plasmid vector and adjuvant (VR 1020 and alum). Acta Trop 118:142–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Podesta RB (1989) Effects of serotonin (5HT) and complement C3 on the synthesis of the surface membrane precursors of adult Schistosoma mansoni. J Parasitol 75:333–343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from National Institute of Allergy and Infectious Diseases (R01A171223) to Afzal A. Siddiqui. The snails were supplied through a NIH-NIAID contract (HHSN2722010000051) to Biomedical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afzal A. Siddiqui.

Additional information

Loc Le and Weidong Zhang have contributed equally to the study and should be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, L., Zhang, W., Karmakar, S. et al. Simultaneous priming with DNA encoding Sm-p80 and boosting with Sm-p80 protein confers protection against challenge infection with Schistosoma mansoni in mice. Parasitol Res 113, 1195–1200 (2014). https://doi.org/10.1007/s00436-014-3757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3757-4

Keywords

Navigation