Skip to main content

Advertisement

Log in

Meta-analysis indicates lack of local adaptation of Schistosoma mansoni to Biomphalaria alexandrina in Egypt

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In Egypt, reclaiming portions of the desert using water from the Nile has resulted in large-scale invasion of Biomphalaria alexandrina in these regions. Studies exploring the local adaptation of Schistosoma mansoni to its snail host have been carried out to predict the extension of schistosomiasis to newly reclaimed areas. A meta-analysis of the relevant reports was conducted to compare the different biological characteristics of sympatric and allopatric Schistosoma mansoni and Biomphalaria alexandrina using different experimental designs. The results showed that there were no significant differences in the biological characteristics of sympatric and allopatric populations. The experimental design of some of the studies analyzed was found to affect the total cercarial production. The distance between the origin of the parasite and that of the snail did not affect any of the biological characteristics. The results showed that there is no evidence of local adaptation between Schistosoma mansoni and Biomphalaria alexandrina; however, the parasite is adapted to its intermediate host throughout the water bodies located in Egypt. The absence of local adaptation between Schistosoma mansoni and Biomphalaria alexandrina is likely of critical importance in predicting public health risks engendered by future reclaimed agriculture projects. Indeed, these results could assist in determining the appropriate balance between the development of water resource projects and schistosomiasis control in Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abou-El-Naga IF (2013) Biomphalaria alexandrina in Egypt: past, present, and future. J Biosci 38:665–672

    Article  PubMed  Google Scholar 

  • Abou-El-Naga IF, El-Nassery SMF, Allam SR, Shaat EA, Mady RFM (2011) Biomphalaria species in Alexandria water channels. Parasitol Int 60:247–254

    Article  PubMed  Google Scholar 

  • Abu El-Einin HM (2004) Biological studies on different forms of Biomphalaria snails (Pulmonata, Planorbidae) in Egypt, with relation to their molecular genetics and compatibility to infection with Schistosoma mansoni, PhD Thesis, Ain Shams University, Egypt

  • Adriko M, Standley CJ, Tinkitina B, Mwesigwa G, Kristensen TK, Stothard JR, Kabatereine NB (2013) Compatibility of Ugandan Schistosoma mansoni isolates with Biomphalaria snail species from Lake Albert and Lake Victoria. Acta Trop; http://dx.doi.org/10.1016/j.actatropica.2013.02.014

  • Bakry FA (2009) Genetic variation between Biomphalaria alexandrina and Biomphalaria glabrata snails and their infection with Egyptian strain of Schistosoma mansoni. J Appl Sci Res 5:1142–1148

    CAS  Google Scholar 

  • Bandoni SM, Mulvey M, Koech DK, Loker ES (1990) Genetic structure of Kenyan populations of Biomphalaria pfeifferi (Gastropoda: Planorbidae). J Mollus Stud 56:383–391

    Article  Google Scholar 

  • Best A, Webb S, White A, Boots M (2011) Host resistance and co-evolution in spatially structured populations. Proc Biol Sci 278(1715):2216–2222

    Article  PubMed Central  PubMed  Google Scholar 

  • Charbonnel N, Angers B, Razatavonjizay R, Bremond P, Dedain C, Jarne P (2002) The influence of mating system, demography, parasites, and colonization on the population structure of Biomphalaria pfeifferi in Madagascar. Mol Ecol 11:2213–2228

    Article  CAS  PubMed  Google Scholar 

  • Coelho LH, Lima WS, Guimaraes MP (2009) Sympatric and allopatric combinations of Lymnaea columella and Fasciola hepatica from southern and south-eastern Brazil. J Helminthol 83:285–288

    Article  CAS  PubMed  Google Scholar 

  • Coustau C, Theron A (2004) Resistant or resisting: seeking consensus terminology. Trends Parasitol 20:209–210

    Article  PubMed  Google Scholar 

  • Cridland CC (1968) Results of exposure of batches from highly susceptible and less susceptible strains of Biomphalaria alexandrina from Egypt to strains of Schistosoma mansoni from Cairo and Alexandria. Bull WHO 39:955–961

    CAS  PubMed  Google Scholar 

  • Djuikwo-Teukeng FF, Njiokou F, Nkengazong L, De Meeûs T, Ekobo AS, Dreyfuss G (2011) Strong genetic structure in Cameroonian populations of Bulinus truncatus (Gastropoda: Planorbidae), intermediate host of Schistosoma haematobium. Infect Genet Evol 11:17–22

    Article  CAS  PubMed  Google Scholar 

  • El-Assal FM, Shoukry NM, Soliman GN, Mansour NS (1997) Infection of the laboratory bred Biomphalaria alexandrina from Giza and Alexandria Governorates with Schistosoma mansoni from Giza in relation to snail size and number of penetrated miracidia. J Egypt Soc Parasitol 27:739–754

    CAS  PubMed  Google Scholar 

  • El-Kady GA, Shoukry A, Reda LA, El-Badri YS (2000) Survey and population dynamics of freshwater snails in newly settled areas of the Sinai Peninsula. Egypt J Biol 2:42–48

    Google Scholar 

  • El-Khayat HM, Mahmoudm KM, Mostafa BB, Tantawy AA, El-Deeb FA, Ragb FM, Ismail NM, El-Said KM, Taleb HM (2011) Habitat characteristics for different freshwater snail species as determined biologically through macro invertebrate information. J Egypt Soc Parasitol 41:651–664

    PubMed  Google Scholar 

  • El-Sayad MHM (1989) Susceptibility of Biomphalaria alexandrina from Beheira and Kaliubieh to infection with Schistosoma mansoni, Master Thesis, Alexandria University, Egypt

  • El-Sayed HF, Rizkalla NH, Mehanna S, Abaza SM, Winch PJ (1995) Prevalence and epidemiology of Schistosoma mansoni and S. haematobium infection in two areas of Egypt recently reclaimed from the desert. Am J Trop Med Hyg 52:194–198

    CAS  PubMed  Google Scholar 

  • Engelstaedter J, Bonhoeffer S (2009) Red Queen dynamics with non-standard fitness interactions. PLoS Comp Biol 5:e1000469. doi:10.1371/journal.pcbi. 1000469

    Article  Google Scholar 

  • Frandsen F (1979) Studies of the relationships between Schistosoma and their intermediate hosts. 1. The genus Bulinus and Schistosoma haematobium from Egypt. J Helminthol 53:15–29

    Article  CAS  PubMed  Google Scholar 

  • Gandon S, Nuismer SL (2009) Interactions between genetic drift, gene flow, and selection mosaics drive parasite local adaptation. Am Nat 173:212–224

    Article  PubMed  Google Scholar 

  • Gandon S, Capowiez Y, Dubois Y, Michalakis Y, Olivieri I (1996) Local adaptation and gene-for-gene co-evolution in a meta-population model. Proc R Soc Lond B 263:1003–1009

    Article  Google Scholar 

  • Gasnier N, Rondelaud D, Abrous M, Carreras F, Boulard C, Diez-Baños P, Cabaret J (2000) Allopatric combination of Fasciola hepatica and Lymnaea truncatula is more efficient than sympatric ones. Int J Parasitol 30:573–578

    Article  CAS  PubMed  Google Scholar 

  • Grech K, Watt K, Read AF (2006) Host-parasite interactions for virulence and resistance in a malaria model system. J Evol Biol 19:1620–1630

    Article  CAS  PubMed  Google Scholar 

  • Greischar MA, Koskella B (2007) A synthesis of experimental work on parasite local adaptation. Ecol Lett 10:418–434

    Article  PubMed  Google Scholar 

  • Haroun NH (1996) Differences in susceptibility of Biomphalaria alexandrina to Schistosoma mansoni from Giza and Dakahlia Governorates, Egypt. J Egypt Soc Parasitol 26:327–335

    CAS  PubMed  Google Scholar 

  • He YX, Guo YH, Ni CH, Xia F, Liu HX, Yu QF, Hu YQ (1991) Compatibility between Oncomelania hupensis and different isolates of Schistosoma japonicum in China. Southeast Asian J Trop Med Public Health 22:245–248

    CAS  PubMed  Google Scholar 

  • Hoeksema JD, Forde SE (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171:275–290

    Article  PubMed  Google Scholar 

  • Ibikounlé M, Mouahid G, Mintsa Nguéma R, Sakiti NG, Kindé-Gasard D, Massougbodji A, Moné H (2012) Life-history traits indicate local adaptation of the schistosome parasite, Schistosoma mansoni, to its snail host, Biomphalaria pfeifferi. Exp Parasitol 132:501–507

    Article  PubMed  Google Scholar 

  • Ibikounlé M, Mouahid G, Mintsa Nguema R, Sakiti N, Massougbodji A, Moné H (2013) Snail intermediate host/Schistosoma haematobium relationships from three transmission sites in Benin (West Africa). Parasitol Res 112:227–233

    Article  PubMed  Google Scholar 

  • Kaltz O, Shykoff JA (1998) Local adaptation in host-parasite systems. Heredity 81:361–370

    Article  Google Scholar 

  • King KC, Jokela J, Lively CM (2011) Trematode parasites infect or die in snail hosts. Biol Lett 7:265–268

    Article  PubMed Central  PubMed  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Lotfy WM, Dejong RJ, Abdel-Kader A, Loker ES (2005) A molecular survey of biomphalaria in Egypt: is B. glabrata present? Am J Trop Med Hyg 73:131–139

    CAS  PubMed  Google Scholar 

  • Manning SD, Woolhouse ME, Ndamba J (1995) Geographic compatibility of the freshwater snail Bulinus globosus and schistosomes from the Zimbabwe highveld. Int J Parasitol 25:37–42

    Article  CAS  PubMed  Google Scholar 

  • Mavárez J, Pointier JP, David P, Delay B, Jarne P (2002) Genetic differentiation, dispersal, and mating system in the schistosome-transmitting freshwater snail Biomphalaria glabrata. Heredity (Edinb) 89:258–265

    Article  Google Scholar 

  • Mitta G, Adema CM, Gourbal B, Loker ES, Theron A (2012) Compatibility polymorphism in snail/schistosome interactions: from field to theory to molecular mechanisms. Dev Comp Immunol 37:1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed SH (1987) Studies on the relationships of the snail genus Biomphalaria in Egypt with certain strains of Schistosoma mansoni, PhD Thesis, Ain Shams University, Egypt

  • Mohamed AH, El-Din AT, Mohamed AM, Habib MR (2012) The relationship between genetic variability and the susceptibility of Biomphalaria alexandrina snails to Schistosoma mansoni infection. Mem Inst Oswaldo Cruz 107:326–337

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, Dejong RJ, Snyder SD, Mkoji GM, Loker ES (2001) Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitology 123(Suppl):S211–S228

    PubMed  Google Scholar 

  • Mostafa OMS, El-Dafrawy SM (2011) Susceptibility of Biomphalaria spp. to infection with Schistosoma mansoni in sympatric and allopatric combinations with observations on the genetic variability between snails. Vet Parasitol 180:226–231

    Article  PubMed  Google Scholar 

  • Mostafa OMS, Bin Dajem SM, Abu El Einin HM (2009) Susceptibility of Saudi Bulinus truncatus to infection with Egyptian Schistosoma haematobium with observations on protein electrophoretic pattern of the snails. Vet Parasitol 161:207–212

    Article  CAS  PubMed  Google Scholar 

  • Mukaratirwa S, Siegismund HR, Kristensen TK, Chandiwana SK (1996) Genetic structure and parasite compatibility of Bulinus globosus (Gastropoda: Planorbidae) from two areas of different endemicity of Schistosoma haematobium in Zimbabwe. Int J Parasitol 26:269–280

    Article  CAS  PubMed  Google Scholar 

  • Mulvey M, Vrijenhoek RC (1982) Population structure in Biomphalaria glabrata: examination of a hypothesis for the patchy distribution of susceptibility to schistosomes. Am J Trop Med Hyg 31:1195–1200

    CAS  PubMed  Google Scholar 

  • Muñoz-Antoli C, Marín A, Trelis M, Toledo R, Esteban JG (2010) Sympatric and allopatric experimental infections of the planorbid snail Gyraulus chinensis with miracidia of Euparyphium albuferensis (Trematoda: Echinostomatidae). J Helminthol 84:420–424

    Article  PubMed  Google Scholar 

  • Pointier JP (1999) Invading freshwater gastropods: some conflicting aspects for public health. Malacologia 41:403–411

    Google Scholar 

  • Prugnolle F, de Meeûs T, Pointier JP, Durand P, Rognon A, Théron A (2006) Geographical variations in infectivity and susceptibility in the host-parasite system Schistosoma mansoni/Biomphalaria glabrata: no evidence for local adaptation. Parasitology 133:313–319

    Article  CAS  PubMed  Google Scholar 

  • Salem S, Mitchell RE, El-Alim El-Dorey A, Smith JA, Barocas DA (2011) Successful control of schistosomiasis and the changing epidemiology of bladder cancer in Egypt. BJU Int 107:206–211

    Article  PubMed  Google Scholar 

  • Sanabria R, Mouze R, Courtioux B, Vignoles P, Rondelaud D, Dreyfuss G, Cabaret J, Romero J (2012) Intermediate snail hosts of French Fasciola hepatica: Lymnaea neotropica and Lymnaea viatrix are better hosts than local Galba truncatula. Parasitol Res 111:2011–2016

    Article  CAS  PubMed  Google Scholar 

  • Shoukry NM, El-Assal FM, Soliman GN, Mansour NS (1997) Susceptibility of three successive snail generations from positive and negative laboratory bred Biomphalaria alexandrina from different localities in Egypt to infection with Schistosoma mansoni from Giza. J Egypt Soc Parasitol 27:317–329

    CAS  PubMed  Google Scholar 

  • StataCorp (2011) Stata Statistical Software: Release 12. College Station. StataCorp LP, TX

    Google Scholar 

  • Talaat M, El-Ayyat A, Sayed HA, Miller FD (1999) Emergence of Schistosoma mansoni infection in upper Egypt: the Giza governorate. Am J Trop Med Hyg 60:822–826

    CAS  PubMed  Google Scholar 

  • Tchuenté LA, Southgate VR, Théron A, Jourdane J, Ly A, Gryseels B (1999) Compatibility of Schistosoma mansoni and Biomphalaria pfeifferi in northern Senegal. Parasitology 118:595–603

    Article  PubMed  Google Scholar 

  • Trouve S, Degen L, Goudet J (2005) Ecological components and evolution of selfing in the freshwater snails, Galba truncatula. J Evol Biol 18:358–370

    Article  CAS  PubMed  Google Scholar 

  • Véra C, Jourdane J, Sellin B, Combes C (1990) Genetic variability in the compatibility between Schistosoma haematobium and its potential vectors in Niger. Epidemiological implications. Trop Med Parasitol 41:143–148

    PubMed  Google Scholar 

  • Viard F, Justy F, Jarne P (1997) The influence of self-fertilization and bottlenecks on the genetic structure of subdivided populations: a case study using microsatellite markers in the freshwater snail Bulinus truncatus. Evolution 51:1518–1528

    Article  Google Scholar 

  • Vogwill T, Fenton A, Brockhurst MA (2008) The impact of parasite dispersal on antagonistic host–parasite coevolution. J Evol Biol 21:1252–1258

    Article  CAS  PubMed  Google Scholar 

  • Vrijenhoek RC, Graven MA (1992) Population-genetics of Egyptian Biomphalaria alexandrina (Gastropoda, Planorbidae). J Hered 83:255–261

    Google Scholar 

  • Yousif F, Ibrahim A, el Bardicy SN (1998) Compatibility of Biomphalaria alexandrina, Biomphalaria glabrata, and a hybrid of both to seven strains of Schistosoma mansoni from Egypt. J Egypt Soc Parasitol 28:863–881

    CAS  PubMed  Google Scholar 

  • Yousif F, el-Emam M, Abdel Kader A, el-Din AS, el-Hommossany K, Shiff C (1999) Schistosomiasis in newly reclaimed areas in Egypt. 2—Patterns of transmission. J Egypt Soc Parasitol 29:635–648

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Fathy Abou-El-Naga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou-El-Naga, I.F. Meta-analysis indicates lack of local adaptation of Schistosoma mansoni to Biomphalaria alexandrina in Egypt. Parasitol Res 113, 1185–1194 (2014). https://doi.org/10.1007/s00436-014-3756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3756-5

Keywords

Navigation