Skip to main content

Evaluation of the repellent effects of Nepeta parnassica extract, essential oil, and its major nepetalactone metabolite against mosquitoes

Abstract

The dichloromethane-methanol extract, the essential oil obtained by hydrodistillation from Nepeta parnassica, and the isolated 4aα,7α,7aβ-nepetalactone were evaluated for their repellent effect against the mosquitoes Aedes (Stegomyia) cretinus Edwards and Culex pipiens pipiens biotype molestus Forskål. The chemical analysis of N. parnassica essential oil, dominated by oxygenated monoterpenes (87 %), revealed 4aα,7α,7aβ-nepetalactone (36.8 %), 1,8-cineole (25.5 %), and 4aα,7β,7aβ-nepetalactone (11.1 %) as the major constituents. The results of the insect bioassays showed that the essential oil and the dichloromethane-methanol extract of N. parnassica were very active against Aedes cretinus for up to 3 h and against Culex pipiens for up to 2 h post application. The isolated 4aα,7α,7aβ-nepetalactone showed very high mosquito repellency for periods of at least 2 h against both species.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publ Corp Carol Stream.

  • Amer A, Mehlhorn H (2006a) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499

    PubMed  Article  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    PubMed  Article  Google Scholar 

  • Baden C (1987) Biosystematic studies in the Nepeta sibthorpii group (Lamiaceae) in Greece. Opera Botanica N 93

  • Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A (2010) Mosquitoes and their control. Springer, Berlin

    Book  Google Scholar 

  • Bernier UR, Furman DL, Kline DL, Allan SA, Barnard DR (2005) Comparison of contact and spatial repellency of catnip oil and N, N-diethyl-3-methylbenzamide (DEET) against mosquitoes. J Med Entomol 42:306–311

    CAS  PubMed  Article  Google Scholar 

  • Birkett MA, Pickett JA (2003) Aphid sex pheromones: from discovery to commercial production. Phytochemistry 62:651–656

    CAS  PubMed  Article  Google Scholar 

  • Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett JA (2011) Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry 72:109–114

    CAS  PubMed  Article  Google Scholar 

  • Bourrel C, Perineau F (1993) Catnip (Nepeta cataria L.) essential oil: analysis of chemical constituents, bacteriostatic and fungistatic properties. J Essent Oil Res 5:159–167

    CAS  Article  Google Scholar 

  • Campbell C, Gries R, Gries G (2011) Forty-two compounds in eleven essential oils elicit antennal responses from Aedes aegypti. Entomol Exp Appl 138:21–32

    CAS  Article  Google Scholar 

  • Chauhan KR, Klun JA, Debboun M, Kramer M (2005) Feeding deterrents of catnip oil components compared with two synthetic amides against Aedes aegypti. J Med Entomol 42:643–646

    CAS  PubMed  Article  Google Scholar 

  • Clem JR, Havemann DF, Raebel MA (1993) Insect repellent deet (N, N-Diethyl-m-methyl-benzamide) cardiovascular toxicity in an adult. Ann Pharmacother 27:289–293

    CAS  PubMed  Google Scholar 

  • Coleman RE, Robert LL, Roberts LW, Glass JA, Seeley DC, Laughinghouse A, Perkins P, Wirtz RA (1993) Laboratory evaluation of repellents against four anopheline mosquitoes (Diptera: Culicidae) and two phlebotomine sand flies (Diptera: Psychodidae). J Med Entomol 30:499–502

    CAS  PubMed  Google Scholar 

  • Conti B, Flamini G, Cioni PL, Ceccarini L, Macchia M, Benelli G (2013) Mosquitocidal essential oils: are they safe against non-target aquatic organisms? Parasitol Res. doi:10.1007/s00436-013-3651-5

    Google Scholar 

  • Darsie RF (1999) Description of the pupa of Aedes cretinus Edwards, a key to the pupae of the Albopictus subgroup, subgenus Stegomyia Theobald, genus Aedes Meigen, and characters to separate the European Stegomyia species (Diptera: Culicidae). Proc Entomol Soc Wash 101:614–618

    Google Scholar 

  • De Pooter HL, Bart N, De Buyck LF, Goetghebeur P, Schamp NM (1987) The essential oil of Nepeta nuda. Identification of a new nepetalactone diastereoisomer. Phytochemistry 26:2311–2314

    Article  Google Scholar 

  • Eisner T (1964) Catnip: Its raison d’ etre. Science 146:1318–1320

    CAS  PubMed  Article  Google Scholar 

  • Feaster JE, Scialdone MA, Todd RG, Gonzalez YI, Foster JP, Hallahan DL (2009) Dihydronepetalactones deter feeding activity by mosquitoes, stable flies, and deer ticks. J Med Entomol 46:832–840

    CAS  PubMed  Article  Google Scholar 

  • Ghaninia M, Larsson M, Hansson BS, Ignell R (2008) Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: Use of gas chromatography linked single sensillum recordings. J Exp Biol 211:3020–3027

    PubMed  Article  Google Scholar 

  • Giatropoulos A, Papachristos DP, Kimbaris A, Koliopoulos G, Polissiou MG, Emmanouel N, Michaelakis A (2012a) Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol Res 111:2253–2263

    PubMed  Article  Google Scholar 

  • Giatropoulos A, Michaelakis A, Koliopoulos G, Pontikakos CM (2012b) Records of Aedes albopictus and Aedes cretinus (Diptera: Culicidae) in Greece from 2009 to 2011. Hell Plant Prot J 5:49–56

    Google Scholar 

  • Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulos G, Emmanouel N, Tzakou O, Michaelakis A (2013) Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res 111:1–11

    Google Scholar 

  • Gkinis G, Tzakou O, Iliopoulou D, Roussis V (2003) Chemical composition and biological activity of Nepeta parnassica oils and isolated nepetalactones. Z Naturforsch 58c:681–686

    Google Scholar 

  • Govere M, Durrheim DN (2007) Techniques for evaluating repellents. In: Debboun M, Frances SP, Strickman D (eds) Insect repellents: principles. CRC Press, Boca Raton, Methods and Uses, p 147

    Google Scholar 

  • Isman MB, Machial CM (2006) Pesticides based on plant essential oils: from traditional practice to commercialization. In Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds, Elsevier, p 29.

  • Kimbaris A, Koliopoulos G, Michaelakis A, Konstantopoulou MA (2012) Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol Res 111:2403–2410

    PubMed  Article  Google Scholar 

  • Lane J (1982) Aedes (Stegomyia) eretinus Edwards 1921 (Diptera: Culicidae). Mosq Syst 14:81–84

    Google Scholar 

  • Lawrence BM (1992) Chemical components of Labiatae essential oils and their exploitation. In: Harley RM, Reynolds T (eds) Advances in labiate science. The Royal Botanic Gardens, Kew, p 419

    Google Scholar 

  • Mabberley DJ (1997) The plant book. Cambridge University Press, Cambridge, p 486

    Google Scholar 

  • Miceli N, Taviano MF, Giuffrida D, Tzakou O, Galati EM (2005) Αnti-inflammatory activity of extract and fractions from Nepeta sibthorpii Bentham. J Ethopharmacol 97:261–266

    CAS  Article  Google Scholar 

  • Moody RP, Benoit FM, Riedel R, Ritter L (1989) Dermal absorption of the insect repellent deet (N, N-Diethyl-m-methyl-benzamide) in rats and monkeys, effect of anatomical site and multiple exposure. J Toxicol Environ Health 26:137–147

    CAS  PubMed  Article  Google Scholar 

  • Nentwig G (2003) Use of repellents as prophylactic agents. Parasitol Res 90:S40–S48

    PubMed  Google Scholar 

  • Paluch G, Bartholomay L, Coats J (2010) Mosquito repellents: a review of chemical structure diversity and olfaction. Pest Manag Sci 66:925–935

    CAS  PubMed  Article  Google Scholar 

  • Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O (2011) Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res 109:425–430

    PubMed  Article  Google Scholar 

  • Qiu H, Jun HW, McCall JW (1998) Pharmacokinetics, formulation and safety of insect repellent N, N-Diethyl-3-methylbenzamide (deet): a review. J Am Mosq Control Assoc 14:12–27

    CAS  PubMed  Google Scholar 

  • Regnier FE, Waller GR, Eisenbraun EJ (1967) Studies on the composition of the essential oils of three Nepeta species. Phytochemistry 6:1281–1289

    CAS  Article  Google Scholar 

  • Semmler M, Abdel-Ghaffar F, Al-Rasheid K, Mehlhorn H (2009) Nature helps: from research to products against blood-sucking arthropods. Parasitol Res 105:1483–1487

    PubMed  Article  Google Scholar 

  • Shaalan E, Canyon D, Younes MWF, Abdel-Wahab H, Mansour A (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    CAS  PubMed  Article  Google Scholar 

  • Spero NC, Gonzalez YI, Scialdone MA, Hallahan DL (2008) Repellency of hydrogenated catmint oil formulations to black flies and mosquitoes in the field. J Med Entomol 45:1080–1086

    CAS  PubMed  Article  Google Scholar 

  • Τurner C (1972) Nepeta L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA Flora Europaea, Cambridge University Press, Cambridge, Vol 3, p 158

  • White GB (2007) Terminology of insect repellents. In: Debboun M, Frances SP, Strickman D (eds) Insect repellents: principles, methods, and uses. CRC Press, London, p 31

    Google Scholar 

  • WHO (1989) Danida course on the appropriate methodology for the selection and use of traditional remedies in National Health Care Programmes. Document WHO/TRM/91.1, World Health Organization, Geneva.

  • Witting-Bissinger BE, Stumpf CF, Donohue KV, Apperson CS, Roe RM (2008) Novel arthropod repellent, BioUD is an efficacious alternative to deet. J Med Entomol 45:891–898

    CAS  PubMed  Article  Google Scholar 

  • Zhang Q-H, Chauhan KR, Erbe EF, Vellore AR, Aldrich JR (2004) Semiochemistry of the golden-eyed lacewing Chrysopa oculata: attraction of males to a male-produced pheromone. J Chem Ecol 30:1849–1870

    CAS  PubMed  Article  Google Scholar 

  • Zhu J, Zeng X, Liu T, Qian K, Han Y, Xue S, Tucker B, Schultz G, Coats J, Rowley W, Zhang A (2006) Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J Am Mosq Control Assoc 22:515–522

    CAS  PubMed  Article  Google Scholar 

  • Zhu JJ, Zeng X-P, Berkebile D, Du H-J, Tong Y, Qian K (2009) Efficacy and safety of catnip (Nepeta cataria) as a novel filth fly repellent. Med Vet Entomol 23:209–216

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Theophanis Constandinidis (Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens) for the plant identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Tzakou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gkinis, G., Michaelakis, A., Koliopoulos, G. et al. Evaluation of the repellent effects of Nepeta parnassica extract, essential oil, and its major nepetalactone metabolite against mosquitoes. Parasitol Res 113, 1127–1134 (2014). https://doi.org/10.1007/s00436-013-3750-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3750-3

Keywords

  • Mosquito Species
  • Deet
  • Eucalyptol
  • Culex Pipiens
  • Mosquito Repellent