Parasitology Research

, Volume 113, Issue 2, pp 747–754 | Cite as

Acaricidal activity of extract of Artemisia absinthium against Rhipicephalus sanguineus of dogs

  • R. Godara
  • S. Parveen
  • R. KatochEmail author
  • A. Yadav
  • P. K. Verma
  • M. Katoch
  • D. Kaur
  • A. Ganai
  • P. Raghuvanshi
  • N. K. Singh
Original Paper


The objective of the study was to evaluate the in vitro efficacy of different concentrations of chloroform extract obtained from the aerial parts of Artemisia absinthium in comparison to amitraz on adults, eggs and larvae of the dog tick Rhipicephalus sanguineus using the adult immersion test (AIT), egg hatchability test (EHT) and larval packet test (LPT), respectively. Five concentrations of the extract (1.25, 2.5, 5, 10 and 20 %) with three replications for each concentration were used in all the bioassays. A control group was established (water + dimethylsulphoxide) together with a positive control group (amitraz), with three repetitions each. In AIT, the mortality rates were 0.0, 13.3, 16.7, 33.3 and 93.3 % in concentrations of 1.25, 2.5, 5, 10 and 20 %, respectively, and the variation was significant (p = 0.0151). The LC50 (CI) and LC95 (CI) values were calculated as 8.793 % (8.217–9.408) and 34.59 % (29.71–40.26), respectively. The egg production was reduced by 6.6, 6.6, 18.3, 42.5 and 85.1 % in the concentrations of 1.25, 2.5, 5, 10 and 20 %, respectively, and it was statistically significant (p = 0.0274). In EHT, hatching was completely inhibited at 5, 10 and 20 % displaying 100 % ovicidal action while at the concentrations of 1.25 and 2.5 %, the inhibition rates were 20 and 60 %, respectively. In LPT, the extract caused 100 % mortality of larvae in the concentrations of 5, 10 and 20 % after 24 h while at the concentrations of 1.25 and 2.5 %, the mortality rates were 54.3 and 96.7 %, respectively. The LC50 (CI) and LC95 (CI) values were determined to be 1.11 % (1.099–1.121) and 2.37 % (2.328–2.423), respectively. The results show that the extract of A. absinthium has acaricidal properties and could be useful in controlling R. sanguineus which is an efficient vector of pathogens both in dogs and humans.


Aerial Part Artemisinin Positive Control Group Amitraz Engorge Female 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baladrin NF, Klocke JA, Wurtle ES, Bollinger WH (1985) Natural plant chemicals: sources of industrial and medical materials. Sci 228:1154–1660CrossRefGoogle Scholar
  2. Baytop T (1984) Therapy With Medicinal Plants in Turkey. Istanbul University Press, Istanbul, pp 166–167Google Scholar
  3. Chagas ACS (2004) Controle de parasitas utilzando extratos vegtais. Rev Bras Parasitol Vet 13:156–160Google Scholar
  4. Chagas ACS, Georgetti CS, de Carvalho CO, Oliveira MCS, Rodrigues RA, Foglio MA, de Magalhaes PM (2011) In vitro activity of Artemisia annua L (Asteraceae) extracts against Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet Jaboticabal 20:31–35CrossRefGoogle Scholar
  5. Chagas ACS, Barros LD, Cotinguiba F, Furlan M, Giglioti R, Oliveira MCS, Bizzo HR (2012) In vitro efficacy of plant extracts and synthesized substances on Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 110:295–303CrossRefGoogle Scholar
  6. Chauhan RS, Bhusan B, Khurana SK, Mahipal SK (1995) Effect of pesticides on immuno-competence of animals and their public health significance. In: Arora SK, Behl RK, Jauro P (eds) Impact of Modern Agriculture on Environment. Maxmullar Bhavan, New Delhi, pp 169–178Google Scholar
  7. Chhabra MB, Saxena MJ (1998) The use of phytotherapeutic agents for the control of acariasis in animals: a review. J Vet Parasitol 12(1):3–8Google Scholar
  8. Chopra RN, Nayer SL, Chopra IC (1992) Glossary of Indian Medicinal Plants, 3rd edn. Council of Scientific and Industrial Research, New Delhi, p 246Google Scholar
  9. Clemente MA, Monteiro CMO, Scoralik MG, Gomes FT, Prata MCA, Daemon E (2010) Acaricidal activity of essential oils from Eucalyptus citriodora and Cymbopogon nardus on larvae of Amblyomma cajenense (Acari: Ixodidae) and Anocentor nitens (Acari: Ixodidae). Parasitol Res 107:987–992PubMedCrossRefGoogle Scholar
  10. Coskun S, Girisgin O, Kurkcuoglu M, Malyer H, Girisgin AO, Kirimer N, Baser KH (2008) Acaricidal efficacy of Origanum onites L. essential oil against Rhipicephalus turanicus (Ixodidae). Parasitol Res 103:259–261PubMedCrossRefGoogle Scholar
  11. Creek DJ (2005) Kinetics of iron mediated artemisinin degradation: effect of solvent composition and iron salt. J Pharm Sci 94:1820–1829PubMedCrossRefGoogle Scholar
  12. Daemon E, Monteiro CMO, Rosa LS, Clemente MA, Arcoverde A (2009) Evaluation of the acaricide activity of thymol on engorged and unengorged larvae of Rhipicephalus sanguineus (Latreille, 1808) (Acari: Ixodidae). Parasitol Res 105:495–497PubMedCrossRefGoogle Scholar
  13. Dantas-Torres F (2008) The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): from taxonomy to control. Vet Parasitol 152:173–185PubMedCrossRefGoogle Scholar
  14. Demma LJ, Traeger MS, Nilcholson WL (2005) Rocky mountain spotted fever from an unexpected tick vector in Arizona. N Engl J Med 353:587–594PubMedCrossRefGoogle Scholar
  15. Drummond RO, Ernst SE, Trevino JL, Gladney WJ, Graham OH (1973) Boophilus annulatus and Boophilus microplus: laboratory test of insecticides. J Econ Entomol 66:130–133PubMedGoogle Scholar
  16. Ekanem AP, Brisibe EA (2010) Effects of ethanol extracts of Artemisia annua L. against monogenean parasites of Heterobranchus longifilis. Parasitol Res 106:1135–1139PubMedCrossRefGoogle Scholar
  17. FAO (2004) Resistance Management and Integrated Parasite Control in Ruminants—Guidelines, Module I—Ticks: Acaricide Resistance: Diagnosis, Management and Prevention. Food and Agriculture Organisation, Animal Production and Health Division, Rome, pp 25–77Google Scholar
  18. Farias MPO, Sousa DP, Arruda AC, Wanderley AG, Teixeira WC, Alves LC, Faustino MAG (2009) Potencial acaricida do oleo de andiroba Carapa guianensis Aubl. sobre femeas adultas ingurgitadas de Anocentor nitens Newmann, 1987 e Rhipicephalus sanguineus Latreille, 1806. Arq Bras Med Vet Zootec 61:877–882CrossRefGoogle Scholar
  19. Ferreira JFS (2007) Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid and artemisinic acid in Artemisia annua L. J Agri Food Chem 55:1686–1694CrossRefGoogle Scholar
  20. Ferreira JFS, Gonzalez JM (2008) Chemical and biological stability of artemisinin in bovine rumen fluid and its kinetics in goats (Capra hircus). Rev Bras de Parasitol Vet 17:103–109Google Scholar
  21. Ferreira JF, Peaden P, Keiser J (2011) In vitro trematocidal effects of crude alcoholic extracts of Artemisia annua, A. absinthium, Asimina triloba and Fumaria officinalis: trematocidal plant extracts. Parasitol Res 109:1585–1592PubMedCrossRefGoogle Scholar
  22. Finney DJ (1962) Probit Analysis—A Statistical Treatment of the Response Curve. Cambridge University Press, CambridgeGoogle Scholar
  23. Ghosh S, Sharma AK, Kumar S, Tiwari SS, Rastogi S, Srivastava S, Singh M, Kumar R, Paul S, Ray DD, Chaudhri P, Rawat AKS (2011) In vitro and in vivo efficacy of Acorus calamus extract against Rhipicephalus (Boophilus) microplus. Parasitol Res 108:361–370PubMedCrossRefGoogle Scholar
  24. Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mole Sci 8:950–988CrossRefGoogle Scholar
  25. Idris UA, Adam SE, Tartour G (1982) The anthelmintic efficacy of Artemisia herba-alba against Haemonchus contortus infection in goats. Anim Hlth Q 22:138–143Google Scholar
  26. Isman MB (2000) Pesticides based on plant essential oils for management of plant pests and diseases. Korea For Res Inst 19:603–608Google Scholar
  27. Juteau F, Jerkovic I, Masotti V, Milos M, Mastelic J, Bessiere JM, Viano J (2003) Composition and antimicrobial activity of essential oil of Artemisia absinthium from Croatia and France. Planta Med 69:158–161PubMedCrossRefGoogle Scholar
  28. Kamaraj C, Rahuman AA, Bagavan A, Elango G, Rajakumar G, Zahir AA, Marimuthu S, Santhoshkumar T, Jayaseelan C (2010) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106:1403–1412PubMedCrossRefGoogle Scholar
  29. Katoch R, Katoch M, Yadav A, Srivastava AK (2007) Formulation of herbal ectoparasiticidals. In compendium of 18th National Congress of Veterinary Parasitology, September 7–9, Jammu, India, pp 24–31Google Scholar
  30. Keiser J (2008) Efficacy and safety of artemether against a natural Fasciola hepatica infection in sheep. Parasitol Res 103:517–522PubMedCrossRefGoogle Scholar
  31. Koc S, Oz E, Aydin L, Cetin H (2012) Acaricidal activity of the essential oils from three Lamiaceae plant species on Rhipicephalus turanicus Pom. (Acari: Ixodidae). Parasitol Res 111:1863–1865PubMedCrossRefGoogle Scholar
  32. Koul MK (1997) Medicinal Plants of Kashmir and Ladakh, Temperate and Cold Arid Himalaya. Indus Publishing Company, FS-5. Tagore Garden, New Delhi, p 102Google Scholar
  33. Lees AD, Beament JWL (1946) An egg waxing organ in ticks. J Cell Sci 290–332Google Scholar
  34. Magadum S, Mondal DB, Ghosh S (2009) Comparative efficacy of Annona squamosa and Azadirachta indica extracts against Boophilus microplus Izatnagar isolate. Parasitol Res 105:1085–1091PubMedCrossRefGoogle Scholar
  35. Martins RM (2006) Estudio in vitro de la accion acaricida del aceite essential de la graminea Citronella de Java (Cymbopogon winterianus Jowitt) en la garrapata Boophilus microplus. Rev Bras de Plantas Med de Botucatu 8:71–78Google Scholar
  36. Mehlhorn H, Schmahi G, Schmidt J (2005) Extract of the seeds of plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365PubMedCrossRefGoogle Scholar
  37. Mohamed AH, El-Sayed MA, Hegazy ME, Helaly SE, Esmail AM, Mohamed NS (2010) Chemical constituents and biological activities of Artemisia herba-alba. Rec Nat Prod 4:1–25Google Scholar
  38. Monteiro CMO, Daemon E, Clemente MA, Rosa LS, Maturano R (2009) Acaricidal efficacy of thymol on engorged nymphs and females of Rhipicephalus sanguineus (Latreille, 1808) (Acari: Ixodidae). Parasitol Res 105:1093–1097CrossRefGoogle Scholar
  39. Monteiro CMO, Maturano R, Daemon E, Catunda-Junior FEA, Calmon F, Senra TS, Faza A, Carvalho MG (2012) Acaricidal efficacy of eugenol on Rhipicephalus sanguineus (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae. Parasitol Res 111:1295–1300PubMedCrossRefGoogle Scholar
  40. Pillay P, Maharaj VJ, Smith PJ (2008) Investigating South African plants as a source of new antimalarial drugs. J Ethnopharmacol 119:438–454PubMedCrossRefGoogle Scholar
  41. Ravindran R, Juliet S, Sunil AR, Ajith Kumar KG, Nair Suresh N, Amithamol KK, Shynu M, Rawat AKS, Ghosh S (2011) Eclosion blocking effect of ethanolic extract of Leucas aspera (Lamiaceae) on Rhipicephalus (Boophilus) annulatus. Vet Parasitol 179:287–290PubMedCrossRefGoogle Scholar
  42. Ribeiro VLS, Avancini C, Goncalves K, Toigo E, Poser GV (2008) Acaricidal activity of Calea serrata (Asteraceae) on Boophilus microplus and Rhipicephalus sanguineus. Vet Parasitol 151:351–354PubMedCrossRefGoogle Scholar
  43. Rosado-Aguilar JA, Aguilar-Caballero A, Rodriguez-Vivas RI, Borges-Argaez R, Garcia-Vazquez Z, Mendez-Gonzalez M (2010) Acaricidal activity of extracts from Petiveria alliacea (Phytolaccaceae) against the cattle tick, Rhipicephalus (Boophilus) microplus. Vet Parasitol 168:299–303PubMedCrossRefGoogle Scholar
  44. Singh R, Verma PK, Singh G (2012) Total phenolic, flavonoids and tannin contents in different extracts of Artemisia absinthium. J Intercult Ethnopharmacol 1:101–104CrossRefGoogle Scholar
  45. Singh NK, Jyoti, Vemu B, Nandi A, Singh H, Kumar R, Dumka VK (2013) Acaricidal activity of Cymbopogon winterianus, Vitex negundo and Withania somnifera against synthetic pyrethroid resistant Rhipicephalus (Boophilus) microplus. Parasitol Res. doi: 10.1007/ s00436-013-3660-4)
  46. Soulsby EJL (1982) Helminths, Arthropods and Protozoa of Domesticated Animals, 7th edn. Bailliere Tindal, London, pp 464–465Google Scholar
  47. Squires JM, Ferreira JF, Lindsay DS, Zajac AM (2011) Effects of artemisinin and Artemisia extracts on Haemonchus contortus in gerbils (Mariones unguiculatus). Vet Parasitol 175(1–2):103–108PubMedCrossRefGoogle Scholar
  48. Srivastava R, Ghosh S, Mandal DB, Azhahianambi P, Singhal PS, Pandey NN, Swarup D (2008) Efficacy of Azadirachta indica extracts against Boophilus microplus. Parasitol Res 104:149–153PubMedCrossRefGoogle Scholar
  49. Streloke M, Ascher KRS, Schmidt GH, Neumann WP (1989) Vapour pressure and volatility of β-asarone, the main ingredient of an indigenous stored product insecticides Acorus calamus oil. Phytoparasitics 17(4):299–313CrossRefGoogle Scholar
  50. Tariq KA, Chishti MZ, Ahmad F, Shawl AS (2009) Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol 160:83–88PubMedCrossRefGoogle Scholar
  51. Taylor DAH (1984) The chemistry of the limonoids from Meliaceae. Fortschr Chem Org Naturst 45:1–102Google Scholar
  52. Van Wyk BE, Wink M (2004) Medicinal plants of the world: an illustrated guide to important medicinal plants and their uses. Times ed, pp 54Google Scholar
  53. Vatsya S, Yadav CL (2011) Evaluation of acaricide resistance mechanisms in field populations of Rhipicephalus (Boophilus) microplus collected from India. Int J Acarol 37:405–410CrossRefGoogle Scholar
  54. Walker A (1994) The Arthropods of Humans and Domestic Animals, 1st edn. Chapman and Hall, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Godara
    • 1
  • S. Parveen
    • 1
  • R. Katoch
    • 1
    Email author
  • A. Yadav
    • 1
  • P. K. Verma
    • 2
  • M. Katoch
    • 3
  • D. Kaur
    • 1
  • A. Ganai
    • 1
  • P. Raghuvanshi
    • 4
  • N. K. Singh
    • 5
  1. 1.Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal HusbandrySher-e-Kashmir University of Agricultural Sciences and TechnologyR.S. PuraIndia
  2. 2.Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal HusbandrySher-e-Kashmir University of Agricultural Sciences and TechnologyR.S. PuraIndia
  3. 3.Microbial Biotechnology DivisionIndian Institute of Integrative Medicine [CSIR]Jammu-180 001India
  4. 4.Division of Veterinary Physiology and Biochemistry, Faculty of Veterinary Sciences and Animal HusbandrySher-e-Kashmir University of Agricultural Sciences and TechnologyR.S. PuraIndia
  5. 5.Department of Veterinary Parasitology, College of Veterinary ScienceGuru Angad Dev Veterinary and Animal Sciences UniversityLudhianaIndia

Personalised recommendations