Skip to main content

Description and molecular characterization of Plasmodium (Novyella) unalis sp. nov. from the Great Thrush (Turdus fuscater) in highland of Colombia

Abstract

Plasmodium (Novyella) unalis sp. nov. was found in the Great Thrush, Turdus fuscater (Passeriformes, Turdidae) in Bogotá, Colombia, at 2,560 m above sea level where the active transmission occurs. This parasite is described based on the morphology of its blood stages and a fragment of the mitochondrial cytochrome b gene (lineage UN227). Illustrations of blood stages of new species are given, and the phylogenetic analysis identifies closely related species and lineages of avian malaria parasites. The new species is most similar to Plasmodium (Novyella) vaughani (lineage SYAT05), a cosmopolitan avian malaria parasite; these parasites are also closely related genetically, with a genetic difference of 3.2 % between them. P. unalis can be readily distinguished from the latter species morphologically, primarily due to the (1) presence of a single large, circular shaped pigment granule in the erythrocytic trophozoites and meronts; (2) presence of prominent vacuoles in trophozoites and growing meronts; and (3) presence of predominantly fan-like shaped erythrocytic meronts. Cytochrome b lineages with high similarity to the new species have been reported in Costa Rica, Brazil, Chile, and USA. It is probable that the new species of malaria parasite is widely distributed in the New World. This parasite has been reported only in the Great Thrush at the study site and might have a narrow range of avian hosts. Records of P. unalis are of particular theoretical interest due to its active transmission at highlands in Andes. Possible influence of urbanization on transmission of this malaria parasite in Bogotá is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Angel L, Ramírez A, Dominguez E (2010) Heat island and temperature spatiotemporal changes in Bogotá City. Rev Acad Colomb Cienc Exact Fis Nat 34:173–183

    Google Scholar 

  • Asociacion Bogotana de Ornitologia (ed) (2000) Aves de la Sabana de Bogota, guia de campo. ABO CAR, Bogota

    Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D, Ostman O, Hannson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B Biol Sci 267:1583–1589. doi:10.1098/rspb.2000.1181

    Article  CAS  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358. doi:10.1111/j.1755-0998.2009.02692.x

    PubMed  Article  Google Scholar 

  • Bensch S, Pérez-Tris J, Waldenström J, Hellgren O (2004) Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution 58:1617–1621. doi:10.1111/j.0014-3820.2004.tb01742.x

    PubMed  CAS  Google Scholar 

  • Chavatte JM, Uzbekov R, Paperna I, Richard-Lenoble D, Landau I (2010) Ultrastructure of erythrocytic stages of avian Plasmodium spp. of the sub-genus Novyella and its “globule”. Parasite 17:123–127. doi:10.1051/parasite/2010172123

    PubMed  Article  CAS  Google Scholar 

  • Corradetti A, Garnham PCC, Laird M (1963) New classification of the avian malaria parasites. Parassitologia 5:1–4

    Google Scholar 

  • Corradetti A, Scanga M (1965) Notes on Plasmodium (Giovannolaia) polare and its transmission with Culiseta longiareolata. Parassitologia 7:61–64

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1038/nmeth.2109

    PubMed  Article  CAS  Google Scholar 

  • Department of Geosciences Universidad Nacional de Colombia (2011) Boletín del análisis de las variables obtenidas en la estación meteorológica de la Universidad Nacional. http://www.geociencias.unal.edu.co/?niv=not&not=545&dep=12. Accessed 30 Apr 2013

  • Dodge M, Guers SL, Sekercioğlu ÇH, Sehgal RNM (2013) North American transmission of hemosporidian parasites in the Swainson’s thrush (Catharus ustulatus), a migratory songbird. J Parasitol 99:548–553. doi:10.1645/GE-3134.1

    PubMed  Article  Google Scholar 

  • Freed LA, Cann RL, Goff ML, Kuntz WA, Bodner GR (2005) Increase in avian malaria at upper elevation in Hawai’i. Condor 107:753–764. doi:10.1650/7820.1

    Article  Google Scholar 

  • Glaizot O, Fumagalli L, Iritano K, Lalubin F, Van Rooyen J, Christe P (2012) High prevalence and lineage diversity of avian malaria in wild populations of Great Tits (Parus major) and mosquitoes (Culex pipiens). PLoS ONE 7:e34964. doi:10.1371/journal.pone.0034964

    PubMed  Article  CAS  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760. doi:10.1126/science.1150195

    PubMed  Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hellgren O, Krizanauskiene A, Valkiūnas G, Bensch S (2007) Diversity and phylogeny of mitochondrial cytochrome B lineages from six morphospecies of avian Haemoproteus (Haemosporida: Haemoproteidae). J Parasitol 93:889–896. doi:10.1645/GE-1051R1.1

    PubMed  Article  CAS  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon spp., Plasmodium spp. and Haemoproteus spp. from avian blood. J Parasitol 90:797–802. doi:10.1645/GE-184R1

    PubMed  Article  CAS  Google Scholar 

  • Higgs S, Beaty BJ (2004) Natural cycles of vector-borne pathogens. In: Marquardt WC, Black WC, Freier JE, Hagedorn HH, Hemingway J, Higgs S, James AA, Kondratieff B, Moore CG (eds) Biology of disease vectors, 2nd edn. Elsevier Academic, San Diego, pp 167–186

    Google Scholar 

  • Howe L, Castro IC, Schoener ER, Hunter S, Barraclough RK, Alley MR (2012) Malaria parasites (Plasmodium spp.) infecting introduced, native and endemic New Zealand birds. Parasitol Res 110:913–923. doi:10.1007/s00436-011-2577-z

    PubMed  Article  Google Scholar 

  • Inci A, Yildirim A, Njabo KY, Duzlu O, Biskin Z, Ciloglu A (2012) Detection and molecular characterization of avian Plasmodium from mosquitoes in central Turkey. Vet Parasitol 188:179–184. doi:10.1016/j.vetpar.2012.02.012

    PubMed  Article  CAS  Google Scholar 

  • Kim KS, Tsuda Y (2010) Seasonal changes in the feeding pattern of Culex pipiens pallens govern the transmission dynamics of multiple lineages of avian malaria parasites in Japanese wild bird community. Mol Ecol 19:5545–5554. doi:10.1111/j.1365-294X.2010.04897.x

    PubMed  Article  CAS  Google Scholar 

  • Kimura M, Darbro JM, Harrington LC (2010) Avian malaria parasites share congeneric mosquito vectors. J Parasitol 96:144–151. doi:10.1645/GE-2060.1

    PubMed  Article  CAS  Google Scholar 

  • Lacorte GA, Felix GM, Pinheiro RR, Chaves AV, Almeida-Neto G, Neves FS, Leite LO, Santos FR, Braga EM (2013) Exploring the diversity and distribution of neotropical avian malaria parasites—a molecular survey from southeast Brazil. PLoS ONE 8:e57770. doi:10.1371/journal.pone.0057770

    PubMed  Article  CAS  Google Scholar 

  • Landau I, Chavatte JM, Peters W, Chabaud A (2010) The sub-genera of avian Plasmodium. Parasite 17:3–7. doi:10.1051/parasite/2010171003

    PubMed  Article  CAS  Google Scholar 

  • LaPointe DA, Goff ML, Atkinson CT (2010) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i. J Parasitol 96:318–324. doi:10.1645/GE-2290.1

    PubMed  Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    PubMed  Article  CAS  Google Scholar 

  • Leica Microsystems Switzerland Limited (2012) Software Leica Application Suite, LAS EZ Version 2.1.0. http://www.leica-microsystems.com/products/microscope-software/educational/details/product/leica-las-ez/downloads/. Accessed 30 Sep 2012

  • Loiseau C, Harrigan RJ, Robert A, Bowie RC, Thomassen HA, Smith TB, Sehgal RN (2012) Host and habitat specialization of avian malaria in Africa. Mol Ecol 21:431–441. doi:10.1111/j.1365-294X.2011.05341.x

    PubMed  Article  Google Scholar 

  • Lotta IA, Matta NE, Torres RD, Moreno de Sandino M, Moncada LI (2013) Leucocytozoon fringillinarum and Leucocytozoon dubreuili in Turdus fuscater from a Colombian Páramo ecosystem. J Parasitol 99:359–362. doi:10.1645/GE-3156.1

    PubMed  Article  Google Scholar 

  • Mantilla JS, Matta NE, Pacheco MA, Escalante AA, Gonzalez AD, Moncada LI (2013) Identification of Plasmodium (Haemamoeba) lutzi (Lucena, 1939) from Turdus fuscater (Great Thrush) in Colombia. J Parasitol 99:662–668. doi:10.1645/12-138.1

    PubMed  Article  Google Scholar 

  • Martinsen ES, Paperna I, Schall JJ (2006) Morphological versus molecular identification of avian Haemosporidia: an exploration of three species concepts. Parasitology 133:279–288. doi:10.1017/S0031182006000424

    PubMed  Article  CAS  Google Scholar 

  • Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Mol Phylogenet Evol 47:261–273. doi:10.1016/j.ympev.2007.11.012

    PubMed  Article  CAS  Google Scholar 

  • Merino S, Moreno J, Vásquez RA, Martínez J, Sánchez-Monsálvez I, Estades CF, Ippi S, Sabat P, Rozzi R, McGehee S (2008) Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecol 33:329–340. doi:10.1111/j.1442-9993.2008.01820.x

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proc Gatew Comput Environ Workshop (GCE) 1–8. doi: 10.1109/gce.2010.5676129

  • Molina LF, Osorio J, Uribe E (1997) Cerros, humedales y areas rurales: Santa Fe de Bogota. DAMA, Bogota

    Google Scholar 

  • Møller AP, Erritzøe J, Karadas F (2010) Levels of antioxidants in rural and urban birds and their consequences. Oecologia 163:35–45. doi:10.1007/s00442-009-1525-4

    PubMed  Article  Google Scholar 

  • Pacheco MA, Escalante AA, Garner MM, Bradley GA, Aguilar RF (2011) Haemosporidian infection in captive masked bobwhite quail (Colinus virginianus ridgwayi), an endangered subspecies of the northern bobwhite quail. Vet Parasitol 182:113–120. doi:10.1016/j.vetpar.2011.06.006

    PubMed  Article  Google Scholar 

  • Rambaut A (2006) FigTree: tree figure drawing too, version1.3.1. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 12 May 2013

  • Rambaut A, Drummond AJ (2007) Tracer v1.5. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 12 May 2013

  • Remsen JV, Cadena CD, Jaramillo A, Nores M, Pacheco JF, Pérez-Emán J, Robbins MB, Stiles FG, Stotz DF, Zimmer KJ (2012) A classification of the bird species of South America. American Ornithologists’ Union, version 7 December 2012. http://www.museum.lsu.edu/~Remsen/SACCBaseline.html. Accessed 7 Dec 2012

  • Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. Proc R Soc Lond B Biol Sci 269:885–892. doi:10.1098/rspb.2001.1940

    Article  Google Scholar 

  • Ricklefs RE, Outlaw DC (2010) A molecular clock for malaria parasites. Science 329:226–229. doi:10.1126/science.1188954

    PubMed  Article  CAS  Google Scholar 

  • Ridgely RS, Allnutt TF, Brooks T, McNicol DK, Mehlman DW, Young BE, Zook JR, International Birdlife (2012) Digital distribution maps of the birds of the western hemisphere, version 5.0. In BirdLife International and NatureServe. Bird species distribution maps of the world. Turdus fuscater. In: IUCN Red List of Threatened Species. Version 2012.2. http://maps.iucnredlist.org/map.html?id=106006415. Accessed 12 May 2013

  • Rodríguez OA, Moya H, Matta NE (2009) Avian blood parasites in the National Natural Park Chingaza: high Andes of Colombia. Hornero 24:1–6

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    PubMed  Article  CAS  Google Scholar 

  • Salazar MJ, Moncada LI (2004) Life cycle of Culex quinquefasciatus Say (Diptera: Culicidae) under uncontrolled conditions. Biomedica 24:385–392

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Chapter 6 Preparation and analysis of eukaryotic genomic DNA. In: Molecular cloning a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York, pp 6.4–6.12

    Google Scholar 

  • Santiago-Alarcon D, Palinauskas V, Schaefer HM (2012) Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev Camb Philos Soc 87:928–964. doi:10.1111/j.1469-185X.2012.00234.x

    PubMed  Article  Google Scholar 

  • Schmidt KA, Ostfeld RS (2001) Biodiversity and the dilution effect in disease ecology. Ecology 82:609–619. doi:10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    PubMed  Article  CAS  Google Scholar 

  • Shahabuddin M, Costero A (2001) Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes. Insect Biochem Mol Biol 31:231–240

    PubMed  Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    PubMed  Article  CAS  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC, Boca Raton

    Google Scholar 

  • Valkiūnas G, Iezhova TA, Krizanauskiene A, Palinauskas V, Bensch S (2008a) In vitro hybridization of Haemoproteus spp.: an experimental approach for direct investigation of reproductive isolation of parasites. J Parasitol 94:1385–1394. doi:10.1645/GE-1569.1

    PubMed  Article  Google Scholar 

  • Valkiūnas G, Iezhova TA, Loiseau C, Smith TB, Sehgal RN (2009) New malaria parasites of the subgenus Novyella in African rainforest birds, with remarks on their high prevalence, classification and diagnostics. Parasitol Res 104:1061–1077. doi:10.1007/s00436-008-1289-5

    PubMed  Article  Google Scholar 

  • Valkiūnas G, Zehtindjiev P, Dimitrov D, Krizanauskiene A, Iezhova TA, Bensch S (2008b) Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in GenBank. Parasitol Res 102:1185–1193. doi:10.1007/s00436-008-0892-9

    PubMed  Article  Google Scholar 

  • Zamora-Vilchis I, Williams SE, Johnson CN (2012) Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: implications for disease in a warming climate. PLoS ONE 7:e39208. doi:10.1371/journal.pone.0039208

    PubMed  Article  CAS  Google Scholar 

  • Zehtindjiev P, Krizanauskiene A, Bensch S, Palinauskas V, Asghar M, Dimitrov D, Scebba S, Valkiūnas G (2012a) A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome B gene. J Parasitol 98:657–665. doi:10.1645/GE-3006.1

    PubMed  Article  Google Scholar 

  • Zehtindjiev P, Križanauskienė A, Scebba S, Dimitrov D, Valkiūnas G, Hegemann A, Tieleman BI, Bensch S (2012b) Haemosporidian infections in skylarks (Alauda arvensis): a comparative PCR-based and microscopy study on the parasite diversity and prevalence in southern Italy and the Netherlands. Eur J Wildl Res 58:335–344. doi:10.1007/s10344-011-0586-y

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a Project Management Program of the Department of Welfare of the Universidad Nacional de Colombia, Bogotá, project number UGP164. The authors wish to thank all the students belonging to the Host-Parasite Relationship Research Group: Avian Hemoparasites Model, especially to Ingrid Lotta for assistance to obtain the sequences. We thank A. Warren, the Natural History Museum, London, UK, for providing the type and voucher material of P. vaughani. Dr. Tatjana Iezhova is acknowledged for assistance during preparation of plates of the illustrations and Dr. C. E. Beard for his comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nubia E. Matta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mantilla, J.S., González, A.D., Valkiūnas, G. et al. Description and molecular characterization of Plasmodium (Novyella) unalis sp. nov. from the Great Thrush (Turdus fuscater) in highland of Colombia. Parasitol Res 112, 4193–4204 (2013). https://doi.org/10.1007/s00436-013-3611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3611-0

Keywords

  • Plasmodium
  • Bird Species
  • Blood Stage
  • Active Transmission
  • Juvenile Bird