Skip to main content

Advertisement

Log in

Possible relationship between Plasmodium falciparum ring-infected erythrocyte surface antigen (RESA) and host cell resistance to destruction by chemicals

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Repeated incubation of Plasmodium falciparum culture in 0.015 % saponin solution for a total of 35 min destroys most of the uninfected cells, leaving only the ring-infected erythrocytes (RIEs). Parasites concentrated by this method can subsequently complete the asexual cycle and infect other erythrocytes. It is possible that resistance to saponin is mediated by one or more of the numerous parasite proteins present in the host erythrocyte membrane. We have found that schizonts are as susceptible as uninfected erythrocytes to saponin, indicating that the protective protein is parasite stage specific. Studies with cultured parasites have shown that ring-infected erythrocyte surface antigen (RESA) strengthens host erythrocyte membrane and protects against destruction. Therefore, we hypothesize that RESA could be involved in resistance to saponin. Here, we have carried out PCR test on RESA gene, using three different primers. One of them showed that P. falciparum isolates collected directly from infected humans and cultured only for a few days, or not at all, have amplicon sizes ranging from 372 to 510 bp. However, the amplicon size changed to 873 bp when in vitro growth was continued for one or more weeks. This genetic transformation precedes acquisition of the ability to confer saponin resistance to RIEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aikawa M, Torii M, Sjolander A, Berzins K, Perlmann P, Miller LH (1990) Pf155/RESA antigen is localized in dense granules of Plasmodium falciparum merozoites. Exp Parasitol 71:326–329

    Article  CAS  PubMed  Google Scholar 

  • Alfadhli S, Salim M, Al-Awadi S (2004) A novel germ line mutation in the von Hippel-Lindau gene in patients in Kuwait. Med Princ Pract 13:312–315

    Article  PubMed  Google Scholar 

  • Angus BJ, Chotivanich K, Udomsangpetch R, White NJ (1997) In vivo removal of malaria parasites from red blood cells without their destruction in acute falciparum malaria. Blood 90:2037–2040

    CAS  PubMed  Google Scholar 

  • Bangham AD, Horne RW (1962) Action of saponin on biological membranes. Nature 196:952–953

    Article  CAS  PubMed  Google Scholar 

  • Biggs BA, Kemp DJ, Brown GV (1989) Subtelomeric chromosome deletions in field isolates of Plasmodium falciparum and their relationship to loss of cytoadherence in vitro. Proc Natl Acad Sci U S A 86:2428–2432

    Article  CAS  PubMed  Google Scholar 

  • Bottger S, Hofman K, Melzig MF (2012) Saponins can perturb biologic membranes and reduce the surface tension of aqueous solutions: a correlation? Bioorg Med Chem 20:2822–2828

    Article  PubMed  CAS  Google Scholar 

  • Bottius E, Bakhsis N, Scherf A (1998) Plasmodium falciparum telomerase: de novo telomere addition to telomeric and nontelomeric sequences and role in chromosome healing. Mol Cell Biol 18:919–925

    CAS  PubMed  Google Scholar 

  • Cooke BM, Lingelbach K, Bannister L, Tilley L (2004) Protein trafficking in Plasmodium falciparum-infected red blood cells. Trends Parasitol 20:581–589

    Article  CAS  PubMed  Google Scholar 

  • Deitsch KW, Wellems TE (1996) Membrane modifications in erythrocytes parasitized by Plasmodium falciparum. Mol Biochem Parasitol 76:1–10

    Article  CAS  PubMed  Google Scholar 

  • Deloron P, Duverseau YT, Zevallos-Ipenza A, Magloire R, Stanfill PS, Nguyen-Dinh P (1987) Antibodies to Pf155, a major antigen of Plasmodium falciparum: seroepidemiological studies in Haiti. Bull World Health Organ 65:339–344

    CAS  PubMed  Google Scholar 

  • Diez-Silva M, Cooke BM, Guillotte M, Buckingham DW, Sauzet J-P, Scanf CL, Contamin H, David P, Mercereau-Puijalon O, Bonnefoy S (2005) A role for the Plasmodium falciparum RESA protein in resistance against heat shock demonstrated using gene disruption. Mol Microbiol 56:990–1003

    Article  CAS  Google Scholar 

  • Favaloro JM, Coppel RL, Corcoran LM, Foote SJ, Brown GV, Anders RF, Kemp DJ (1986) Structure of the RESA gene of Plasmodium falciparum. Nucleic Acids Res 14:8265–8277

    Article  CAS  PubMed  Google Scholar 

  • Genton B, Al-Yaman F, Betuela I, Anders RF, Saul A, Baea K, Mellombo M, Taraika U, Brown GV, Pye D, Irving DO, Felger I, Beck H-P, Smith TA, Alpers MP (2003) Safety and immunogenicity of a three-component blood-stage malaria vaccine (MSP1, MSP2, RESA) against Plasmodium falciparum in Papua New Guinean children. Vaccine 22:30–41

    Article  CAS  PubMed  Google Scholar 

  • Goldberg DE, Cowman AF (2010) Moving in and renovating: exporting proteins from Plasmodium into host erythrocytes. Nat Rev Microbiol 8:617–621

    Article  CAS  PubMed  Google Scholar 

  • Haldar K, Mohandas N (2007) Erythrocyte remodeling by malaria parasites. Curr Opin Hematol 14:203–209

    Article  PubMed  Google Scholar 

  • Hernandez-Rivas R, Hinterberg K, Scherf A (1996) Compartmentalization of genes coding for immunodominant antigens to fragile chromosome ends leads to dispersed subtelomeric gene families and rapid gene evolution in Plasmodium falciparum. Mol Biochem Parasitol 78:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kabilan L, Sharma VP, Kaur P, Ghosh SK, Yadav RS, Chauhan VS (1994) Cellular and humoral immune responses to well-defined blood stage antigens (major merozoite surface antigen) of Plasmodium falciparum in adults from an Indian zone where malaria is endemic. Infect Immun 62:685–691

    CAS  PubMed  Google Scholar 

  • Maier AG, Cooke BM, Cowman AF, Tilley L (2009) Malaria parasite proteins that remodel host erythrocyte. Nat Rev Microbiol 7:341–354

    Article  CAS  PubMed  Google Scholar 

  • Mills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KSW, Lim CT, Milon G, David PH, Mercereau-Puijalon O, Bonnefoy S, Suresh S (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci U S A 104:9213–9217

    Article  CAS  PubMed  Google Scholar 

  • Moorthy VS, Good MF, Hill AVS (2004) Malaria vaccine developments. Lancet 363:150–156

    Article  PubMed  Google Scholar 

  • Moyano EM, Gonzalez LM, Cuevas L, Perez-Pastrana E, Santa-Maria Y, Benito A (2001) Molecular cloning and characterization of the RESA gene, a marker of genetic diversity of Plasmodium falciparum. Mol Biol Rep 37:2893–2902

    Article  CAS  Google Scholar 

  • Orjih AU (2012) Hemozoin accumulation in Garnham bodies of Plasmodium falciparum gametocytes. Parasitol Res 111:2353–2359

    Article  PubMed  Google Scholar 

  • Orjih AU (2008) Requirements for maximal enrichment of viable intraerythrocytic Plasmodium falciparum rings by saponin hemolysis. Exp Biol Med 233:1359–1367

    Article  CAS  Google Scholar 

  • Orjih AU (1996) Hemolysis of Plasmodium falciparum trophozoite-infected erythrocytes after artemisinin exposure. Br J Haematol 92:324–328

    Article  CAS  PubMed  Google Scholar 

  • Orjih AU (1994) Saponin haemolysis for increasing concentration of Plasmodium falciparum infected erythrocytes. Lancet 343:295

    Article  CAS  PubMed  Google Scholar 

  • Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, Mohandas N, An X (2007) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Ribacke U, Mok BW, Wirta V, Normark J, Lundeberg J, Kironde F, Egwang TG, Nilsson P, Wahlgren M (2007) Genome wide gene amplifications and deletions in Plasmodium falciparum. Mol Biochem Parasitol 155:33–44

    Article  CAS  PubMed  Google Scholar 

  • Scherf A, Mattei D (1992) Cloning and characterization of chromosome breakpoints of Plasmodium falciparum: breakage and new telomere formation occurs frequently and randomly in subtelomeric genes. Nucleic Acids Res 20:1491–1496

    Article  CAS  PubMed  Google Scholar 

  • Vazeux G, Le Scanf C, Fandeur T (1993) The RESA-2 gene of Plasmodium falciparum is transcribed in several independent isolates. Infect Immun 61:4469–4472

    CAS  PubMed  Google Scholar 

  • Wooden J, Kyes S, Sibley CH (1993) PCR and strain identification in Plasmodium falciparum. Parasitol Today 9:303–305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Kuwait University Research Grant No. NM02/05. We thank Dr. SM Alfadhli and Prof. YA Luqmani for their assistance in interpreting RESA sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustine U. Orjih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orjih, A.U., Cherian, P.T. Possible relationship between Plasmodium falciparum ring-infected erythrocyte surface antigen (RESA) and host cell resistance to destruction by chemicals. Parasitol Res 112, 4043–4051 (2013). https://doi.org/10.1007/s00436-013-3595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3595-9

Keywords

Navigation