Skip to main content
Log in

Structural and biochemical studies of a recombinant 25.5 kDa glutathione transferase of Taenia solium metacestode (rTs25GST1-1)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In this work, we studied a recombinant mu-class glutathione transferase of 25.5 kDa from Taenia solium metacestode (rTs25GST1-1) that follows Michaelis–Menten kinetics with 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters obtained for rTs25GST1-1 with CDNB and GSH were V max  = 12.04 μmol/min/mg and Km = 1.38 mM, and V max  = 10.20 μmol/min/mg and Km = 0.90, respectively. The optimal activity was found at pH 8 in the 37–40 °C temperature range. Circular dichroism studies for rTs25GST1-1 at different pH showed that it maintains a typical α-helix structure between pH 6.5–7.5, but loses it between pH 8 and 8.5. Thermal CD assays showed rTs25GST1-1 barely changed its secondary structure. Unfolding/refolding assays showed that rTs25GST1-1 retained its structure up to 40 °C without loss of its activity. Additionally, exposure of rTs25GST1-1 to cumene hydroperoxide did not produce significant changes in its structure and only affected 50 % of its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson C, Mosialou E, Weinander R, Hebert H, Morgenstern R (1993) Rat liver microsomal glutathione transferase: studies on structure and function. In: Tew TW, Pickett CB, Mantle TJ, Mannervik B, Hayes JD (eds) Structure and function of glutathione transferases. CRC Press Inc, Boca Raton, pp 109–116

    Google Scholar 

  • Armstrong RN (1994) Glutathione S-transferases: structure and mechanism of an archetypical detoxification enzyme. Adv Enzymol 69:1–44

    PubMed  CAS  Google Scholar 

  • Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10(1):2–18

    Article  PubMed  CAS  Google Scholar 

  • Board PG, Coggan M, Watson S, Gage PW, Dulhunty AF (2004) CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. Int J Biochem Cell Biol 36(8):1599–1612

    Article  PubMed  CAS  Google Scholar 

  • Böhn G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5(3):191–5

    Google Scholar 

  • Brophy PM, Pritchard DI (1994) Parasitic helminth glutathione S-transferases: an update on their potential as targets for immuno- and chemotherapy. Exp Parasitol 79(1):89–96

    Article  PubMed  CAS  Google Scholar 

  • Cho SG, Lee YH, Park HS, Ryoo K, Kang KW, Park J, Eom SJ, Kim MJ, Chang TS, Choi SY, Shim J, Kim Y, Dong MS, Leei MJ, Kim SG, Ichijo H, Choi EJ (2001) Glutathione S-Transferase Mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem 276:12749–12755

    Article  PubMed  CAS  Google Scholar 

  • Dirr HW, Wallace LA (1999) Role of the C-Terminal Helix 9 in the stability and ligandin function of class r glutathione transferase A1-1. Biochemistry 38:15631–15640

    Article  PubMed  CAS  Google Scholar 

  • Eaton DL, Bammler TK (1999) Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci 49(2):156–164

    Article  PubMed  CAS  Google Scholar 

  • Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23:149–169

    Article  PubMed  CAS  Google Scholar 

  • Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542

    PubMed  CAS  Google Scholar 

  • Habig HW, Jacoby WB (1981) Assays for differentiation of glutathione S-transferases. Meth Enzym 77:398–405

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge J (eds) Free radicals in biology and medicine. Oxford University Press, USA, pp 187–267

    Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  PubMed  CAS  Google Scholar 

  • Hill BG, Bhatnagar A (2011) Protein S-glutathiolation: redox-sensitive regulation of protein function. J Mol Cell Cardiol 52(3):559–567

    Article  PubMed  Google Scholar 

  • Hornby J, Luo J-K, Stevens JM, Wallace LA, Kaplan W, Armstrong RN, Dirr HW (2000) Equilibrium folding of dimeric class μ glutathione transferases involves a stable monomeric intermediate. Biochemistry 39:12336–12344

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B (1999) Common structural features of MAPEG-A widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Prot Sci 8:689–692

    Article  CAS  Google Scholar 

  • Ji X, Zhang P, Armstrong RN, Gilliland GL (1992) The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3–3 and glutathione at 2.2-A resolution. Biochemistry 31(42):10169–10184

    Article  PubMed  CAS  Google Scholar 

  • Johnson WC (1990) Protein secondary structure and circular dichroism: a practical guide. Proteins 7:205–214. doi:10.1002/prot.340070302

    Article  PubMed  CAS  Google Scholar 

  • Liebau E, Wildenburg G, Brophy PM, Walter RD, Henkle-Dürsen K (1996) Molecular cloning, expression and characterization of a recombinant glutathione S-transferase from Echinococcus multilocularis. Mol Biochem Parasitol 80:27–39

    Article  PubMed  CAS  Google Scholar 

  • Mannervik B (1985) The isoenzymes of glutathione transferase. Adv Enzymol Relat Areas Mol Biol 57:357–417

    PubMed  CAS  Google Scholar 

  • Nguyen HA, Bae YA, Lee EG, Kim SH, Diaz-Camacho SP, Nawa Y, Kang I, Kong Y (2010) A novel sigma-like glutathione transferase of Taenia solium metacestode. Int J Parasitol 40:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723

    Article  PubMed  CAS  Google Scholar 

  • Reinemer P, Dirr HW, Ladenstein R, Schäffer J, Gallay O, Huber R (1991) The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J 10(8):1997–2005

    PubMed  CAS  Google Scholar 

  • Reinemer P, Dirr HW, Ladenstein R, Huber R, Lo Bello M, Federici G, Parker MW (1992) Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol 227(1):214–226

    Article  PubMed  CAS  Google Scholar 

  • Rossjohn J, McKinstry WJ, Oakley AJ, Parker MW, Stenberg G, Mannervik B, Dragani B, Cocco R, Aceto A (2000) Structures of thermolabile mutants of human glutathione transferase P1-1. J Mol Biol 302(2):295–302

    Article  PubMed  CAS  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  PubMed  CAS  Google Scholar 

  • Sinning I, Kleywegt GJ, Cowan SW, Reinemer P, Dirr HW, Huber R, Gilliland GL, Armstrong RN, Ji X, Board PG (1993) Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol 232(1):192–212

    Article  PubMed  CAS  Google Scholar 

  • Slaughter RL, Edwards DJ (1995) Recent advances: the cytochrome P450 enzymes. Ann Pharmacother 29(6):619–624

    PubMed  CAS  Google Scholar 

  • Sluis-Cremer N, Naidoo N, Dirr H (1996) Class-pi glutathione S-transferase is unable to regain its native conformation after oxidative inactivation by hydrogen peroxide. Eur J Biochem 242:301–307

    Article  PubMed  CAS  Google Scholar 

  • Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 51:299–313

    Article  PubMed  CAS  Google Scholar 

  • Torres-Rivera A, Landa A (2008) Cooperative kinetics of the recombinant glutathione transferase of Taenia solium and characterization of the enzyme. Arch Biochem Biophys 477:372–378

    Article  PubMed  CAS  Google Scholar 

  • Vibanco-Pérez N, Jimenez L, Mendoza-Hernández G, Landa A (2002) Characterization of a recombinant mu-class glutathione S-transferase form Taenia solium. Parasitol Res 88:398–404

    Article  PubMed  Google Scholar 

  • Warholm M, Guthenberg C, Mannervik B (1983) Molecular and catalytic properties of glutathione transferase p from human liver: an enzyme efficiently conjugating epoxides. Biochemistry 22:3610–3617

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Fan Y, Xue B, Luo L, Shen J, Zhang S, Jiang Y, Yin Z (2006) Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 25:5787–5800

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Manevich Y, Tew KD, Townsend DM (2012) S-glutathionylation of protein disulfide isomerase regulates estrogen receptor α stability and function. Int J Cell Biol. doi:10.1155/2012/273549

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT-176925) and Dirección General de Asuntos del Personal Académico (DGAPA-PAPIIT IN 219711). Aramis Roldan was supported by CONACyT (231036) and is a student of Posgrado en Ciencias Biológicas (PCBIOL) of Universidad Nacional Autónoma de Mexico (UNAM). Authors declare that the experiments to produce antibodies in rabbits comply with the current laws for animal use and care (NOM-062-ZOO-1999) of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Landa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roldan, A., Torres-Rivera, A. & Landa, A. Structural and biochemical studies of a recombinant 25.5 kDa glutathione transferase of Taenia solium metacestode (rTs25GST1-1). Parasitol Res 112, 3865–3872 (2013). https://doi.org/10.1007/s00436-013-3577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3577-y

Keywords

Navigation