Skip to main content

Advertisement

Log in

Chromosomal inversions among insecticide-resistant strains of Anopheles stephensi Liston, a malaria mosquito

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Polytene chromosomes were prepared from the ovarian nurse cells of semi-gravid females of ten insecticide-resistant strains of Anopheles stephensi. Altogether, 16 heterozygous paracentric inversions, namely b/+ (11D-16C) in alphamethrin; i/+ (14B-18A) and h/+ (27B-28A) in DDT; j/+ (14A-16B) in chlorpyrifos; k/+ (11D-16B) in cyfluthrin; l/+ (11A-16C) in deltamethrin; m/+ (14B-15C) and e/+ (32A-33B) in bifenthrin; n/+ (12D-14B), f/+ (33A-36A) and g/+ (33C-34A) in propoxur; o/+ (11A-12D), h/+ (37A-37C) and i/+ (31C-32C) in temephos; d/+ (33D-35C) in carbofuran and a/+ (41C-43B) in neem strains, were reported. No inversions were observed in X chromosome so far. The frequency of inversions in different insecticides was found to be highest in the 2R arm, followed by the 3R arm. Such inversions were not reported in the corresponding susceptible strains or in the parental stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benedict MQ, McNitt LM, Cornel AJ, Collins FH (1999) A new marker, black, a useful recombination suppressor in (2)2, and a balanced lethal for chromosome 2 of the mosquito Anopheles gambiae. Am J Trop Med Hyg 61:618–624

    PubMed  CAS  Google Scholar 

  • Brooke BD, Hunt RH, Chandre F, Carnevalle P, Coetzee M (2002) Stable chromosome inversion polymorphisms and insecticide resistance in the malaria vector mosquito Anopheles gambiae (Diptera: Culicidae). J Med Entomol 39(4):568–573

    Article  PubMed  CAS  Google Scholar 

  • Chandrakala BN, Shetty NJ (2004) Genetic studies of DDT resistance in the malaria mosquito Anopheles stephensi Liston. J Cytol Genet 5:185–190

    Google Scholar 

  • Chandrakala BN, Shetty NJ (2006a) Genetic studies of chlorpyrifos resistance in the malaria mosquito Anopheles stephensi Liston. J Cytol Genet 7:155–160

    Google Scholar 

  • Chandrakala BN, Shetty NJ (2006b) Genetic studies of cyfluthrin resistance in Anopheles stephensi Liston—a malaria mosquito. In: Sobti et al (eds) Proceedings of Prof. G. P. Sharma felicitation: new trends in life sciences. Panjab University, Chandigarh, India, pp 48–52

    Google Scholar 

  • Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V (2002) A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298:1415–1418

    Article  PubMed  CAS  Google Scholar 

  • Coluzzi M, Sabatini A, Petrarca V, Dideco MA (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73:483–497

    Article  PubMed  CAS  Google Scholar 

  • Coluzzi M, Di Dicco MA, Cancrini G (1973) Chromosomal inversions in Anopheles stephensi. Parassitologia 15:129–136

    PubMed  CAS  Google Scholar 

  • Coluzzi M, Petrarca V, Di Deco MA (1985) Chromosomal inversion intergradations and incipient speciation in Anopheles gambiae. Bollettino di Zoologia 52:45–63

    Article  Google Scholar 

  • Curtis CF, Akiyama J, Davidson G (1976) A genetic sexing system in Anopheles gambiae species A. Mosq News 36:492–498

    Google Scholar 

  • D'Alessandro G, Frizzi G, Mariani M (1957) Effect of DDT selection pressure on the frequency of chromosomal structures in Anopheles atroparvus. Bull World Health Organ 16:859–864

    PubMed  Google Scholar 

  • della Torre A, Costantini C, Besansky NJ, Caccone A, Petrarca V, Powell JR, Coluzzi M (2002) Speciation within Anopheles gambiae—the glass is half full. Science 298:115–117

    Article  PubMed  CAS  Google Scholar 

  • French WL, Baker RH, Kitzmiller JB (1962) Preparation of mosquito chromosomes. Mosq News 22:377–383

    Google Scholar 

  • Frizzi G, Holstein M (1956) Etude cytogenetique d'Anopheles gambiae. Bull World Health Organ 15:425–435

    PubMed  CAS  Google Scholar 

  • Gayathri DK, Shetty NJ (1989) Polytene chromosomes of Anopheles stephensi Liston—a malaria vector. Vignana Bharathi 12:1–8

    Google Scholar 

  • Gayathri DK, Shetty NJ (1992) Chromosomal inversions in Anopheles stephensi Liston—a malaria mosquito. J Cytol Genet 27:153–161

    Google Scholar 

  • Ghosh C, Shetty NJ (2004) Tests for association of fenitrothion resistance with inversion polymorphism in the malaria vector, Anopheles stephensi. The Nucleus 47(3):164–168

    Google Scholar 

  • Hariprasad TPN, Shetty NJ (2013) Autosomal inheritance of alphamethrin, a synthetic pyrethroid, resistance in Anopheles stephensi – Liston, a malaria mosquito. Bull Entomol Res. doi:10.1017/S0007485313000102

    Google Scholar 

  • Hoffmann AA, Sgro CM, Weeks AR (2004) Chromosomal inversion polymorphisms and adaptation. Trends Ecol Evol 19:482–488

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Willi Y (2008) Detecting genetic responses to environmental change. Nat Rev Genet 9:421–432

    Article  PubMed  CAS  Google Scholar 

  • Hunt RH (1987) Location of gene on chromosome arms in the Anopheles gambiae group of species and their correlation to linkage data for other anopheline mosquitoes. Med Vet Entomol 1:81–88

    Article  PubMed  CAS  Google Scholar 

  • Jortzik E, Kehr S, Becker K (2011) Post-translational modifications in apicomplexan parasites. In: Mehlhorn H (ed) Parasitology research monographs. Progress in parasitology, vol 2. Springer, Berlin, p 93

    Google Scholar 

  • King M (1993) Species evolution: the role of chromosome change. Cambridge University Press, Cambridge

    Google Scholar 

  • Mason GF, Brown AWA (1963) Chromosome changes and insecticide resistance in Anopheles quadrimaculatus. Bull World Health Organ 28:77–81

    PubMed  CAS  Google Scholar 

  • Mosna E, Palmieri C, Ascher KRS, Rivosecchi L, Neri I (1959) Studies on insecticide resistant anophelines. 2. Chromosome arrangements in laboratory developed DDT resistant strains of Anopheles atroparvus. Bull World Health Organ 20:63–74

    PubMed  CAS  Google Scholar 

  • Mosna E, Rivosecchi L, Ascher KRS (1958) Studies on insecticide resistant anophelines. 1. Chromosome arrangements in a dieldrin selected strain of Anopheles atroparvus. Bull World Health Organ 19:297–301

    PubMed  CAS  Google Scholar 

  • Nigatu W, Curtis CF, Lulu M (1995) Test for association of DDT resistance with inversion polymorphism in Anopheles arabiensis from ethiopia. J Am Mosq Control Assoc 1:238–240

    Google Scholar 

  • Noor MA, Cunningham AL, Larkin JC (2001) Consequences of recombination rate variation on quantitative trait locus mapping studies. Simulations based on the Drosophila melanogaster genome. Genetics 159:581–588

    PubMed  CAS  Google Scholar 

  • Paris M, Boyer S, Bonin A, Collado A, David J, Despres L (2010) Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Mol Ecol 19:325–337

    Article  PubMed  Google Scholar 

  • Rajashree BH, Shetty NJ (1998) Genetic study of deltamethrin resistance in the malaria mosquito Anopheles stephensi Liston. J Parasit Dis 22:140–143

    Google Scholar 

  • Rodriguez-Trelles F, Alvarez G, Zapata C (1996) Time series analysis of seasonal changes of the O inversion polymorphism of Drosophila subobscura. Genetics 142:179–187

    PubMed  CAS  Google Scholar 

  • Sanil D, Shetty NJ (2009) Genetic study of temephos resistance (tr), an organophosphate insecticide in the malaria mosquito, Anopheles stephensi Liston. J Cytol Genet 11:15–22

    Google Scholar 

  • Sanil D, Shetty NJ (2010) Genetic study of propoxur resistance—a carbamate insecticide in the malaria mosquito. Anopheles stephensi Liston. Malaria Research and Treatment. doi:10.4061/2010/502824

    PubMed  Google Scholar 

  • Seawright JA, Kaiser PE, Dame DA, Lofgren CS (1978) Genetic method for the preferential elimination of females of Anopheles albimanus. Science 200(4347):1303–1304

    Article  PubMed  CAS  Google Scholar 

  • Sharakhova MV, Xia A, Leman SC, Sharakhov IV (2011) Arm specific dynamics of chromosome evolution in malaria mosquito. BMC Evolutionary Biology 11:91

    Article  PubMed  Google Scholar 

  • Sharakhova MV, Xia A, McAlister SI, Sharakhov IV (2006) A standard cytogenetic photomap for the mosquito Anopheles stephensi (Diptera: Culicidae): application for physical mapping. J Med Entomol 43:861–866

    Article  PubMed  CAS  Google Scholar 

  • Shetty NJ (1983) Chromosomal translocation and semisterility in the malaria vector Anopheles fluviatilis. James Ind J Malariol 20:45–48

    Google Scholar 

  • Shetty NJ (1987) Genetic sexing system for the preferential elimination of females in Culex quinquefasciatus. J Am Mosq Control Assoc 3(1):84–86

    PubMed  CAS  Google Scholar 

  • Shetty NJ (1997) Genetic control of mosquito vectors of diseases. J Parasit Dis 21:113–121

    Google Scholar 

  • Shetty NJ (2002) The genetic control of Anopheles stephensi—a malaria mosquito. In: Raghunath D, Nayak R (eds) Trends in malaria and vaccine research: the current scenario. Tata McGraw-Hill, New Delhi, pp 44–79

    Google Scholar 

  • Shetty NJ, Madhyastha AD, Ghosh C, Rajasree BH (1999) Egg float ridge number in Anopheles stephensi: ecological variation. J Parasitic Dis 23:45–48

    Google Scholar 

  • Subbarao SK, Vasantha K, Adak T, Sharma VP, Curtis CF (1987) Egg-float ridge number in Anopheles stephensi: ecological variation and genetic analysis. Med Vet Entomol 1:256–271

    Article  Google Scholar 

  • Sweet WC, Rao BA (1937) Races of Anopheles stephensi Liston, 1901. Indian Medical Gazette 72:665–674

    Google Scholar 

  • Tabachnick WJ, Black WC (1996) Population genetics in vector biology. In: Beaty BJ, Marquardt WC (eds) The biology of disease vectors. University Press of Colorado, Niwot, pp 417–437

    Google Scholar 

  • van Doorn GS, Kirkpatrick M (2007) Turnover of sex chromosomes induced by sexual conflict. Nature 449:909–912

    Article  PubMed  Google Scholar 

  • van Emden HF, Service MW (2004) Pest and vector control. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • White GB (1974) Biological effects of intraspecific chromosomal polymorphism in malaria vector populations. Bull World Health Organ 50:299–306

    PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (1981) Instruction for determining the susceptibility or resistance of mosquito larvae to insecticide. WHO/VBC/81.807. WHO, Geneva

    Google Scholar 

  • World Health Organization (WHO) (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13. WHO, Geneva

    Google Scholar 

  • World Health Organization (WHO) (2006) Mosquito adulticides for indoor residual spraying and treatment of mosquito nets. Guidelines for testing. WHO/CDS/NTD/WHOPES/GCDPP/2006.3. WHO, Geneva

    Google Scholar 

  • Wieten RW, van Vugt M, van Leth F, Grobusch MP (2011) Highlights of a symposium, malaria: where are we today, where are we going? Open Infectious Diseases Journal 5:99–106

    Article  Google Scholar 

  • Xia A, Sharakhova M, Leman S, Tu Z, Bailey J, Smith C, Sharakhov IV (2010) Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes. PLoS ONE 5:e10592

    Article  PubMed  Google Scholar 

  • Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC (1996) An integrated genetic map of the human malaria vector mosquito, Anopheles gambiae. Genetics 143:941–952

    PubMed  CAS  Google Scholar 

  • Zin T, Minn MZ, Shetty NJ (2008) Estimation of proteins and enzymes in different developmental stages of neem susceptible and resistant strains of Anopheles stephensi Liston, 1901. Universities Research Journal 1:185–193

    Google Scholar 

  • Zin T, Minn MZ, Shetty NJ (2009) Biochemical basis of bifenthrin resistance in Anopheles stephensi Liston 1901, a malaria mosquito. Journal of Myanmar Academy of Arts & Science 2:121–130

    Google Scholar 

Download references

Acknowledgments

This paper has been supported by financial assistance from the Department of Science and Technology (DST) and University Grants Commission (UGC), New Delhi, to Professor N. J. Shetty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Shetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shetty, N.J., Hariprasad, T.P.N., Sanil, D. et al. Chromosomal inversions among insecticide-resistant strains of Anopheles stephensi Liston, a malaria mosquito. Parasitol Res 112, 3851–3857 (2013). https://doi.org/10.1007/s00436-013-3575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3575-0

Keywords

Navigation