Skip to main content

Advertisement

Log in

Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Diseases transmitted by blood-feeding mosquitoes, such as dengue fever, dengue hemorrhagic fever, Japanese encephalitis, malaria, and filariasis, are increasing in prevalence, particularly in tropical and subtropical zones. To control mosquitoes and mosquito-borne diseases, which have a worldwide health and economic impacts, synthetic insecticide-based interventions are still necessary, particularly in situations of epidemic outbreak and sudden increases of adult mosquitoes. However, the indiscriminate use of conventional insecticides is fostering multifarious problems like widespread development of insecticide resistance, toxic hazards to mammals, undesirable effects on nontarget organisms, and environmental pollution. The aim of this research was to evaluate the toxicity of mosquito larvicidal activity of essential oil from Coleus aromaticus and its pure isolated constituent thymol against larvae of Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus. The chemical composition of the essential oil was analyzed using gas chromatography–mass spectroscopy. A total of 14 components of the essential oil of C. aromaticus were identified. The major chemical components identified were thymol (82.68 %), terpinen-4-ol (3.2 %), and trans-Caryophyllene (3.18 %). Twenty-five early third instar larvae of C. tritaeniorhynchus, A. albopictus, and A. subpictus were exposed and assayed in the laboratory. Thymol and essential oil were tested in concentrations of 10, 20, 30, 40, and 50 and 30, 60, 90, 120, and 150 ppm, respectively. The larval mortality was observed after 24 h of treatment. The thymol had a significant toxic effect against early third-stage larvae of C. tritaeniorhynchus, A. albopictus, and A. subpictus with an LC50 values of 28.19, 24.83, and 22.06 μg/mL respectively, whereas the essential oil of C. aromaticus had an LC50 values of 72.70, 67.98, and 60.31 μg/mL, respectively. No mortality was observed in controls. The Chi-square values were significant at p < 0.05 level. The result indicated that the essential oil of C. aromaticus and the isolated constituent have a potential for use in control of C. tritaeniorhynchus, A. albopictus, and A. subpictus larvae and could be useful in search of newer, safer, and more effective natural compounds as larvicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Amerasinghe PH, Amerasinghe FP (1999) Multiple host feeding in field populations of Anopheles culicifacies and A. subpictus in Sri Lanka. Med Vet Entomol 13(2):124–131

    Article  PubMed  CAS  Google Scholar 

  • Amin G, Sourmaghi MHS, Zahedi M, Khanavi M, Samadi N (2005) Essential oil composition and antimicrobial activity of Oliveria decumbens. Fitoterapia 76:704–707

    Article  PubMed  CAS  Google Scholar 

  • Ansari MA, Razdan RK (1995) Relative efficacy of various oils in repelling mosquitoes. Indian J Malariol 32:104–111

    PubMed  CAS  Google Scholar 

  • Batabyal L, Sharma P, Mohan L, Maurya P, Srivastava CN (2007) Larvicidal efficiency of certain seed extracts against Anopheles stephensi, with reference to Azadirachta indica. J Asia Pacific Entomol 10:1–5

    Article  Google Scholar 

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Born Zoon Dis 7:76–85

    Article  Google Scholar 

  • Calcuttawalla AI, Pandita NS, Bhatt RM, Vaidya ADB (2002) Antibacterial activity, HPTLC and GLC studies of volatile oil of Thymus vulgaris. Indian Drugs 39:41–41

    CAS  Google Scholar 

  • Calderone NW, Wilson WT, Spivak M (1997) Plant extracts used for control of the parasitic mites Varroa jacobsoni (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae) in colonies of Apis mellifera (Hymenoptera: Apidae). J Econ Entomol 90:1080–1086

    Google Scholar 

  • Caminade C, Medlock JM, Ducheyne E, McIntryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717

    Article  PubMed  Google Scholar 

  • Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem. Inst Oswaldo Cruz 99:541–544

    Article  CAS  Google Scholar 

  • Chaiyasit D, Choochote W, Rattanachanpichai E, Chaithong U, Chaiwong P, Jitpakdi A, Tippawangkosol P, Riyong D, Pitasawat B (2006) Essential oils as potential adulticides against two populations of Aedes aegypti, the laboratory and natural field strains, in Chiang Mai province, Northern Thailand. Parasitol Res 99:715–721

    Article  PubMed  Google Scholar 

  • Champakaew D, Choochote W, Pongpaibul Y, Chaithong U, Jitpakdi A, Tuetun B, Pitasawat B (2007) Larvicidal efficacy and biological stability of a botanical natural product, zedoary oil impregnated sand granules, against Aedes aegypti (Diptera, Culicidae). Parasitol Res 100:729–737

    Article  PubMed  Google Scholar 

  • Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 89:99–102

    Article  PubMed  CAS  Google Scholar 

  • Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009) Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour Technol 100:452–456

    Article  PubMed  CAS  Google Scholar 

  • Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1461

    Article  PubMed  Google Scholar 

  • Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2012) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 110:2013–2021

    Article  PubMed  Google Scholar 

  • Das NG, Nath DR, Baruah I (2000) Field evaluation of herbal mosquito repellents. J Com Des 31(4):241–245

    Google Scholar 

  • Dwivedi SK, Singh KP (1998) Fungi toxicity of some higher plant products against Macrophomina phaseolina (Tassi) Goid. Flavour Fragr J 13:397–399

    Article  CAS  Google Scholar 

  • El-Gengaihi SE, Amer SAA, Mohamed SM (1996) Biological activity of thyme oil and thymol against Tetranychus urticae Koch. Anz Schädl.kd. Pflanzenschutz Umwellschutz 69:157–159

    Article  Google Scholar 

  • Ellis MD, Baxendale FP (1997) Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants. J Econ Entomol 90:1087–1091

    CAS  Google Scholar 

  • Erler F, Tunc I (2005) Monoterpenoids as fumigants against greenhouse pests: toxic, development and reproduction-inhibiting effects. J Plant Dis Prot 112:181–192

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–72

    Google Scholar 

  • Franzios G, Mirotsou M, Hatziapostolou E, Kral J, Scouras ZG, Mauragani-Tsipidou P (1997) Insecticidal and genotoxic activities of mint essential oils. J Agric Food Chem 45:2690–2694

    Article  CAS  Google Scholar 

  • Govindarajan M (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (willd.) Hook. F. Benth (Rutaceae) against three mosquito species. Asian Pacific J Trop Med 3:874–877

    Article  CAS  Google Scholar 

  • Govindarajan M (2011a) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pacific J Trop Med 4(2):106–111

    Article  CAS  Google Scholar 

  • Govindarajan M (2011b) Evaluation of Andrographis paniculata Burm.f. (Family: Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pacific J Trop Med 4:176–181

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011a) Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pacific J Trop Biomed 1:43–48

    Article  CAS  Google Scholar 

  • Govindarajan M, Sivakumar R, Amsath A, Niraimathi S (2011a) Mosquito larvicidal properties of Ficus benghalensis L. (Family: Moraceae) against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pacific J Trop Med 4:505–509

  • Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2011c) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110:2023–2032

    Article  PubMed  Google Scholar 

  • Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Experiment Parasitol 134:7–11

    Article  CAS  Google Scholar 

  • Helander IM, Anakomi HL, Latva-Kala K, Sandholm TM, Pol I, Smid EJ, Gorris LGM, Wright AV (1998) Characterization of the action of selected essential oil components on Gram negative bacteria. J Agric Food Chem 46:3590–3595

    Article  CAS  Google Scholar 

  • Hoedojo PF, Atmosoedjono S, Purnomo TT (1980) A study on vectors of Bancroftian filariasis in West Flores, Indonesia. Southeast Asian J Trop Med Pub Health 11(3):399–404

    CAS  Google Scholar 

  • Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant and synergistic effects of monoterpenoids essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agric Food Chem 49:715–720

    Article  PubMed  CAS  Google Scholar 

  • James AA (1992) Mosquito molecular genetics: the hands that feed bite back. Science 257(5066):37–38

    Article  PubMed  CAS  Google Scholar 

  • Jaya P, Singh B, Prakash N, Dubey K (2012) Insecticidal activity of Ageratum conyzoides L., Coleus aromaticus Benth. and Hyptis suaveolens (L.) Poit essentialoils as fumigant against storage grain insect Tribolium castaneum Herbst. J Food Sci Technol. doi:10.1007/s13197-012-0698-8

    Google Scholar 

  • Karpouhtsis I, Pardali E, Kokkini S, Scouras ZS, Mavragani-Tsipidou P (1998) Insecticidal and genotoxic activities of oregano essential oils. J Agric Food Chem 46:1111–1115

    Article  CAS  Google Scholar 

  • Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, Utzinger J (2005) Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Tropica 95:40–57

    Article  PubMed  Google Scholar 

  • Kimbaris AC, Koliopoulos G, Michaelakis A, Konstantopoulou MA (2012) Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol Res 111:2403–2410

    Article  PubMed  Google Scholar 

  • Koba K, Sanda K, Guyon C, Raynaud C, Millet J, Chaumont JP, Nicod L (2007) Chemical composition and in vitro cytotoxic activity of essential oils from two tropical Lamiaceae: Aeollanthus pubescens Benth. and Ocimum gratissimum L. J Essential Oil Res 10:60–69

    CAS  Google Scholar 

  • Konakchiev A, Tsankova E (2002) The essential oils of Satureja montana ssp. kitaibelli Wierzb. and Satureja pilosa var. pilosa Velen from Bulgaria. J Essential Oil Res 14:120–121

    Article  CAS  Google Scholar 

  • Kuwahara Y (1982) Pheromone study on acarid mites. VII. Structural requisites in monoterpenoids for inducing the alarm pheromone activity against the mold mite, Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae). Appl Entomol Zool 17:127–132

    CAS  Google Scholar 

  • Lee S, Tsao R, Peterson C, Coats JR (1997) Insecticidal activity of monoterpenoids to western corn root worm (Coleoptera: Chrysomelidae), two spotted spidermite (Acari: Tetranychidae) and Housefly (Diptera: Muscidae). J Econ Entomol 90:883–892

    PubMed  CAS  Google Scholar 

  • Lee SE, Kim JE, Lee HS (2001) Insecticide resistance in increasing interest. Agric Chem Biotechnol 44:105–112

    CAS  Google Scholar 

  • Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW (2012) Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 110:2125–2130

    Article  PubMed  Google Scholar 

  • Liu XC, Liu ZL, Dong HW, Zhou L, Du SS (2013) Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 112:1197–1203

    Article  PubMed  Google Scholar 

  • Mangathayaru K, Pratap DVV, Thirumurgan D, Patel PS, David DJ, Karthikeyan J (2005) Essential oil composition of Coleus amboinicus Lour. Indian J Pharm Sci 67:122–123

    CAS  Google Scholar 

  • Masoudi S, Rustaiyan A, Ameri N, Monfared A, Komeelizadeh H, Kamalinejad M, Jami-Roodi J (2002) Volatile oils of Carum copticum (L.) C.B. Clarke in Benth. et Hook. and Semenovia tragioides (Boiss.) Manden. from Iran. J Essential Oil Res 14:288–289

    Article  CAS  Google Scholar 

  • Meshkatalsadat MH, Sarabi RS, Moharmipour S (2007) Chemical constituents of Thymus eriocalyx leaves of Iranian origin plant. Asian J Chem 19:1648–1650

    CAS  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2005) Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 26:399–401

    PubMed  Google Scholar 

  • Mohan M, Haider SZ, Andola HC, Purohit VK (2011) Essential oils as green pesticides: for sustainable agriculture. Res J Pharm Biol Chem Sci 2:100–106

    Google Scholar 

  • Murthy PS, Ramalakshmi K, Srinivas P (2009) Fungitoxic activity of Indian borage (Plectranthus amboinicus) volatiles. Food Chem 114:1014–1018

    Article  CAS  Google Scholar 

  • Nadkarni AK (1996) Indian materia medica, 2nd edn. Popular Prakashan, Mumbai

    Google Scholar 

  • Papachristos DP, Stamopoulos DC (2003) Selection of Acanthoscelides obtectus (Say) for resistance to lavender essential oil vapour. J Stored Products Res 39:433–441

    Article  CAS  Google Scholar 

  • Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microb Infect 11:1177–1185

    Article  CAS  Google Scholar 

  • Pohilt AM, Rezende AR, Lopes Baldin EL, Lopes NP, de Andrade Neto VF (2011) Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases—a review. Planta Med 77(6):618–630

    Article  Google Scholar 

  • Powell AL, Bowen ID (1996) The screening of naturally occurring compounds for use as seed treatments for protection of winter wheat against slug damage. In: Slug & Snail pests in agriculture. Proceedings of a symposium, University of Kent Canterbury, UK, 24–26 Sept. 1996. Farnham, UK, British Crop Protection council, pp 231–236

  • Pushpanathan T, Jebanesan A, Govindarajan M (2006) Larvicidal, ovicidal and repellent activities of Cymbopogan citrates Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 23(2):208–212

    PubMed  CAS  Google Scholar 

  • Pushpanathan T, Jebanesan A, Govindarajan M (2008a) The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 102:1289–1291

    Article  PubMed  Google Scholar 

  • Pushpanathan T, Jebanesan A, Govindarajan M, Samithurai K (2008b) Larvicidal activity of the extract of Citrullus colocynthis (L) Schred against vector mosquitoes. In: Dr. Tyagi BK (ed) Vectors-borne diseases: epidemeology and control. Scientific Publishers, Jodhpur, India, pp 67–72

  • Ravi V, Vanajakshi S, Gowda A, Chandramuki A (1989) A laboratory diagnosis of Japanese encephalitis using monoclonal antibodies and correlation of findings with the outcome. J Med Virol 29:221–223

    Article  PubMed  CAS  Google Scholar 

  • Regnault-Roger C, Hamroui A (1995) Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a bruchid of kidney bean (Phaseolus vulgaris L.). J Stored Products Res 31:291–299

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    Article  PubMed  CAS  Google Scholar 

  • Santos SRL, Silva VB, Barbosa JDF, Santos RLC, deSousa DM, Cavalcanti SCH (2010) Toxic effects on and structure-toxicity relationships of phenylpropanoids, terpenes, and related compounds in Aedes aegypti larvae. Vector-Borne Zoonotic Dis 10:1049–1054

    Article  PubMed  Google Scholar 

  • Sedy K, Koschier EH (2003) Bioactivity of carvacrol and thymol against Frankliniella occidentalis and Thrips tabaci. J Appl Entomol 127:313–316

    Article  CAS  Google Scholar 

  • Singh VK, Singh S, Singh S, Singh DK (1999) Effect of active molluscicidal component of spices on different enzyme activities and biogenic amine levels in the nervous tissue of Lymnacea accuminata. Phytotherapy Res 13:649–654

    Article  CAS  Google Scholar 

  • Sonda KJ, Koba KJ, Walla BA, Akpagana K, Garneau FX, Gagnon H, Jean FI (1999) Aeollanthus pubescens Benth., a potential source of thymol rich essential oil. J Essent Oil Res 11:257–258

    Article  Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 72:210–237

    Google Scholar 

  • Suman DS, Shrivastava AR, Parashar BD, Pant SC, Agrawal OP, Prakash S (2008) Scanning electron microscopic studies on egg surface morphology and morphometrics of Culex tritaeniorhynchus and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 104:173–176

    Article  PubMed  CAS  Google Scholar 

  • Thomas TG, Rao S, Lal S (2004) Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea cairica Linn. Jpn J Infect Dis 57:176–177

    PubMed  Google Scholar 

  • Tiwary M, Naik SN, Tewaryb DK, Mittalc PK, Yadavc S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vect Born Dis 44:198–204

    CAS  Google Scholar 

  • Traboulsi AF, Taoubi K, El-Haj S, Bessiere JM, Ramal S (2002) Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 58:491–495

    Article  PubMed  CAS  Google Scholar 

  • Traboulsi AF, El-Haj S, Tueni M, Taoubi K, Nader NB, Mrad A (2005) Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 61:597–604

    Article  PubMed  CAS  Google Scholar 

  • Tsao R, Yu Q (2000) Nematicidal activity of monoterpenoid compounds against economically important nematodes in agriculture. J Essent Oil Res 12:350–354

    Article  CAS  Google Scholar 

  • Warrier PK, Nambiar VPK, Ramankutty C (1994) Indian medicinal plants (Vol. I and IV). Orient Longman, Hyderabad

    Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, 2005; WHO/CDS/WHOPES/GCDPP/1.3

  • Zhu L, Tian Y (2011) Chemical composition and larvicidal activity of Blumea densiflora essential oils against Anopheles anthropophagus: a malarial vector mosquito. Parasitol Res 109:1417–1422

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. (Mrs.) Selvi Sabhanayakam, Professor and Head of the Department of Zoology, Annamalai University for the laboratory facilities provided. The authors would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marimuthu Govindarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindarajan, M., Sivakumar, R., Rajeswary, M. et al. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol Res 112, 3713–3721 (2013). https://doi.org/10.1007/s00436-013-3557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3557-2

Keywords

Navigation