Skip to main content

Molecular characterization of Cryptosporidium isolates from high-excreting young dairy calves in dairy cattle herds in Western France

Abstract

Ninety-two Cryptosporidium sp.-positive fecal samples of dairy diarrheic or non-diarrheic calves from 30 cattle herds in Normandy (France) were selected. Here, the aim was to investigate the species of Cryptosporidium excreted as well as the subtypes of Cryptosporidium parvum found in 7–17-day-old dairy calves. Excretion levels were comprised between 2 × 104 and 4 × 107 oocysts per gram of feces. Here, a nested 18S SSU rRNA PCR associated with sequencing was performed for identification of Cryptosporidium species and revealed the presence of C. parvum in most cases (80/82), except for two animals which were infected with Cryptosporidium bovis. Then, C. parvum samples were submitted to gp60 PCR. For 39 samples from 24 different herds, a multilocus analysis based on four mini-microsatellites loci (MM19, MM5, MSF, and MS9-Mallon) were conducted. These results were combined with sequence analysis of the gp60 to obtain multilocus types (MLTs). Here, C. parvum gp60 genotyping identified three subtypes in the IIa zoonotic allele family: IIaA15G2R1 (88 %), IIaA16G3R1 (10 %), and IIaA19G2R1 (2 %), and we identified 12 MLTs. The MS9-Mallon locus was reported as the most polymorphic (five alleles). The most common MLT was MLT 1 with 15 samples in 10 farms: (MS9-M: 298, MSF: 165, MM5: 264, MM19: 462, and gp60 subtype: IIaA15G2R1). When comparing diarrheic and non-diarrheic fecal samples, no difference was seen for distribution of Cryptosporidium species, C. parvum gp60 subtypes, and MLTs. Here, in a range of oocyst excretion of 104–107 opg, both in diarrheic and non-diarrheic calves, infection was mainly due to C. parvum and to the zoonotic subtype: IIaA15G2R1.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Alves M, Xiao L, Antunes F, Matos O (2006) Distribution of Cryptosporidium subtypes in humans and domestic and wild ruminants in Portugal. Parasitol Res 99:287–292

    PubMed  Article  Google Scholar 

  • Brook EJ, Anthony Hart C, French NP, Christley RM (2009) Molecular epidemiology of Cryptosporidium subtypes in cattle in England. Vet Journal 179:378–382

    Article  CAS  Google Scholar 

  • Caccío SM, Pozio E (2006) Advances in the epidemiology, diagnosis and treatment of cryptosporidiosis. Expert Rev Anti Infect Ther 4:429–443

    PubMed  Article  Google Scholar 

  • Cama VA, Ross JM, Crawford S, Kawai V, Chavez-Valdez R, Vargas D, Vivar A, Ticona E, Navincopa M, Williamson J, Ortega Y, Gilman RH, Bern C, Xiao L (2007) Differences in clinical manifestations among Cryptosporidium species and subtypes in HIV-infected persons. J Infect Dis 196:684–691

    PubMed  Article  Google Scholar 

  • Castro-Hermida JA, Pors I, Poupin B, Ares-Mazás E, Chartier C (2005) Prevalence of Giardia duodenalis and Cryptosporidium parvum infections in goat kids in western France. Small Rumin Res 56:259–264

    Article  Google Scholar 

  • Chalmers RM, Giles M (2010) Zoonotic cryptosporidiosis in the UK—challenge for control. J Appl Microbiol 109:1487–1497

    PubMed  Article  CAS  Google Scholar 

  • Chalmers RM, Ferguson C, Cacciò S, Gasser RB, Abs El-Osta YG, Heijnen L, Xiao L, Elwin K, Hadfield S, Sinclair M, Stevens M (2005) Direct comparison of selected methods for genetic categorisation of Cryptosporidium parvum and Cryptosporidium hominis species. Int J Parasitol 35:397–410

    PubMed  Article  CAS  Google Scholar 

  • Coklin T, Uehlinger FD, Farber JM, Barkema HW, O'Handley RM, Dixon BR (2009) Prevalence and molecular characterization of Cryptosporidium spp. in dairy calves from 11 farms in Prince Edward Island. Canada Vet Parasitol 160:323–326

    Article  CAS  Google Scholar 

  • Díaz P, Hadfield SJ, Quílez J, Soilán M, López C, Panadero R, Díez-Baňos P, Morrondo P, Chalmers RM (2012) Assessment of three methods for multilocus fragment typing of Cryptosporidium parvum from domestic ruminants in north west Spain. Vet Parasitol 186:188–195

    PubMed  Article  Google Scholar 

  • Drumo S, Widmer G, Morrison LJ, Tait A, Grelloni V, D’Avino N, Pozio E (2012) Evidence of host-associated populations of Cryptosporidium parvum in Italy. Appl Enviro Microbiol 78:3523–3529

    Article  CAS  Google Scholar 

  • Fayer R (2010) Taxonomy and species delimitation in Cryptosporidium. Exp Parasitol 124:90–97

    PubMed  Article  Google Scholar 

  • Fayer R, Trout JM, Graczyk TK, Lewis EJ (2000) Prevalence of Cryptosporidium, Giardia and Eimeria infections in post-weaned and adult cattle on three Maryland farms. Vet Parasitol 93:103–112

    PubMed  Article  CAS  Google Scholar 

  • Fayer R, Santín M, Xiao L (2005) Cryptosporidium bovis n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). J Parasitol 91:624–629

    PubMed  Article  Google Scholar 

  • Fayer R, Santin M, Trout JM (2008) Cryptosporidium ryanae n.sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). Vet Parasitol 156:191–198

    PubMed  Article  Google Scholar 

  • Feng X, Rich SM, Akiyoshi D, Tumwine JK, Kekitiinwa A, Nabukeera N, Tzipori S, Widmer G (2000) Extensive polymorphism in Cryptosporidium parvum identified by multilocus microsatellite analysis. Appl Environ Microbiol 66:3344–3349

    PubMed  Article  CAS  Google Scholar 

  • Feng Y, Ortega Y, He G, Das P, Xu M, Zhang X, Fayer R, Gatei W, Cama V, Xiao L (2007) Wide geographic distribution of Cryptosporidium parvum and deer like genotype in bovines. Vet Parasitol 144:1–9

    PubMed  Article  Google Scholar 

  • Follet J, Guyot K, Leruste H, Follet-Dumoulin A, Hammouma-Ghelboun O, Certad G, Dei Cas E, Halama P (2011) Cryptosporidium infection in a veal calf cohort in France: molecular characterization of species in longitudinal study. Vet Res 42:116

    PubMed  Article  CAS  Google Scholar 

  • Gatei W, Das P, Dutta P, Sen A, Cama V, Lal AA, Xiao L (2007) Multilocus sequence typing and genetic structure of Cryptosporidium hominis from children in Kolkata, India. Infect Genet Evol 2:197–205

    Article  Google Scholar 

  • Heine J (1982) Eine einfache Nachweismethod fur Kryptosporidien in Kot. Zentralbl Veterinaermed Reihe B 29:324–327

    Article  CAS  Google Scholar 

  • Jex AR, Smith HV, Monis PT, Campbell BE, Gasser RB (2008) Cryptosporidium-biotechnical advances in the detection, diagnosis and analysis of genetic variation. Biotechnol Adv 26:304–317

    PubMed  Article  CAS  Google Scholar 

  • Kváč M, Vítovec J (2003) Prevalence and pathogenicity of Cryptosporidium andersoni in one herd of beef cattle. J Vet Med B infect Dis Vet Public Health 50:451–457

    PubMed  Article  Google Scholar 

  • Kváč M, Kouba M, Vítovec J (2006) Age-related and housing-dependence of Cryptosporidium infection of calves from dairy and beef herds in South Bohemia, Czech Republic. Vet Parasitol 137:202–209

    PubMed  Article  Google Scholar 

  • Mallon M, MacLeod A, Wasling J, Smith H, Reilly B, Tait A (2003) Population structures and the role of genetic exchange in the zoonotic pathogen Cryptosporidium parvum. J Mol Evol 56:407–417

    PubMed  Article  CAS  Google Scholar 

  • Monis PT, Thompson RC (2003) Cryptosporidium and Giardia-zoonoses: fact or fiction? Infect Genet Evol 3:233–244

    PubMed  Article  CAS  Google Scholar 

  • Morrison JL, Mallon EM, Smith VH, MacLeod A, Xiao L, Tait A (2008) The population structure of the Cryptosporidium parvum population in Scotland: a complex picture. Infect Genet Evol 8:121–129

    PubMed  Article  CAS  Google Scholar 

  • Ng J, Eastwood K, Walker B, Durrheim DN, Massey PD, Porigneaux P, Kemp R, McKinnon B, Laurie K, Miller D, Bramley E, Ryan U (2012) Evidence of Cryptosporidium transmission between cattle and humans in northern New South Wales. Exp Parasitol 130:437–441

    PubMed  Article  Google Scholar 

  • Panciera RJ, Thomassen RW, Garner FM (1971) Cryptosporidial infection in a calf. Vet Pathol 8:479–484

    Google Scholar 

  • Plutzer J, Karanis P (2009) Genetic polymorphism in Cryptosporidium species: an update. Vet Parasitol 165:187–199

    PubMed  Article  CAS  Google Scholar 

  • Quílez J, Sanchez-Acedo C, del Cacho E, Clavel A, Causape AC (1996) Prevalence of Cryptosporidium and Giardia infection in cattle in Aragon (northeastern Spain). Vet Parasitol 66:139–146

    PubMed  Article  Google Scholar 

  • Rieux A, Chartier C, Pors I, Paraud C (2013) Dynamics of excretion and molecular characterization of Cryptosporidium isolates in pre-weaned French beef calves. Vet Parasitol 195(1–2):169–172

    PubMed  Article  CAS  Google Scholar 

  • Robinson G, Chalmers RM (2012) Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis. Exp Parasitol 6475:1–16

    Google Scholar 

  • Santín M, Trout J, Xiao L, Zhou L, Greiner E, Fayer R (2004) Prevalence and age related variation of Cryptosporidium species and genotypes in dairy calves. Vet Parasitol 122:103–117

    PubMed  Article  Google Scholar 

  • Santín M, Trout JM, Fayer R (2008) A longitudinal study of cryptosporidiosis in dairy cattle from birth to 2 years of age. Vet Parasitol 155:15–23

    PubMed  Article  Google Scholar 

  • Silverlås C, Penedo-Blanco I (2012) Cryptosporidium spp. in calves and cows from organic and conventional dairy herds. Epidemiol Infect 8:1–11

    Google Scholar 

  • Silverlås C, De Verdier K, Emanuelson U, Mattsson JG, Björkman C (2010) Cryptosporidium infection in herds with and without calf diarrhoeal problems. Parasitol Res 107:1435–1444

    PubMed  Article  Google Scholar 

  • Silverlås C, Bosaeus-Reineck H, Naslund K, Björkman C (2013) Is there a need for improved Cryptosporidium diagnostics in Swedish calves? Int J Parasitol 43:155–161

    PubMed  Article  Google Scholar 

  • Soba B, Logar J (2008) Genetic classification of Cryptosporidium isolates from humans and calves in Slovenia. Parasitol 135:1236–1270

    Google Scholar 

  • Tanriverdi S, Widmer G (2006) Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis. Infect Genet Evol 6:113–122

    PubMed  Article  CAS  Google Scholar 

  • Tanriverdi S, Markovics A, Arslan MO, Itik A, Shkap V, Widmer G (2006) Emergence of distinct genotypes of Cryptosporidium parvum in structured host populations. Appl Environ Microbiol 72:2507–2513

    PubMed  Article  CAS  Google Scholar 

  • Trotz-Williams LA, Wayne Martin S, Leslie KE, Duffield T, Nydam DV, Peregrine AS (2007) Calf-level risk factors for neonatal diarrhea and shedding of Cryptosporidium parvum in Ontario dairy calves. Prev Vet Med 82:12–28

    PubMed  Article  Google Scholar 

  • Wielinga PR, de Vries A, van der Goot TH, Mank T, Mars MH, Kortbeek LM, van der Giessen JW (2008) Molecular epidemiology of Cryptosporidium in human and cattle in the Netherlands. Int J Parasitol 38:809–817

    PubMed  Article  CAS  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89

    PubMed  Article  CAS  Google Scholar 

  • Xiao L, Fayer R (2008) Molecular characterization of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int J Parasitol 38:1239–1255

    PubMed  Article  CAS  Google Scholar 

  • Xiao L, Morgan UM, Limor J, Escalante A, Arrowood M, Shulaw W, Thomson RC, Fayer R, Lal AA (1999) Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl Environ Microbiol 65:3386–3391

    PubMed  CAS  Google Scholar 

  • Xiao L, Bern C, Limor J, Sulaiman I, Roberts J, Checkley W, Cabrera L, Gilman RH, Lal AA (2001) Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. J Infect Dis 183:492–497

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

A. Rieux is a grateful recipient of a grant from Anses/Region Poitou-Charentes. The authors acknowledge the cooperation of Marie-Christine Dupuy of GDS61, in the department of Orne, France, for the collection of fecal samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rieux.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rieux, A., Chartier, C., Pors, I. et al. Molecular characterization of Cryptosporidium isolates from high-excreting young dairy calves in dairy cattle herds in Western France. Parasitol Res 112, 3423–3431 (2013). https://doi.org/10.1007/s00436-013-3520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3520-2

Keywords

  • Cryptosporidiosis
  • Cattle Herd
  • Cryptosporidium Oocyst
  • Gp60 Gene
  • Cryptosporidium Species