Skip to main content

Advertisement

Log in

Nyctanthes arbor-tristis positively affects immunopathology of malaria-infected mice prolonging its survival

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In order to search for new products that display antimalarial and immunomodulatory mechanisms that complement direct antiparasitic activity, a set of in vitro and in vivo experiments were designed to evaluate the effect of Nyctanthes arbor-tristis in Plasmodium berghei infected mice. Three extracts of N. arbor-tristis leaves from varying concentrations of alcohol and water were considered for their potential to suppress expression of pro-inflammatory mediators from macrophages primed with lipopolysaccharide. The ethanolic extract, which lowered the pro-inflammatory mediators [tumour necrosis factor (TNF), 13.52–55.83 %; interleukin-6 (IL-6), 0–17.29 %; and NO, 39.37–81.63 %], was selected to be examined in malaria (P. berghei) infected mice. Corroborating the in vitro results, it was observed that the extract could normalise the TNF (78 %) and IL-6 (70.35 %) optimally at 1 g/kg, thus retarding the pathological process in infected mice and increasing the mean survival time from 10.6 to 15.6 days. There were no signs of toxicity in the acute oral toxicity test up to 2 g/kg. 1H NMR of the biologically active extract was obtained to ensure the presence of the compound of interest, i.e., iridoid glycoside. The quality and the reproducibility of results were ensured by means of achieving characteristic high-performance liquid chromatography fingerprint of the extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal J, Singh S, Chanda D, Bawankule DU, Bhakuni RS, Pal A (2011) Antiplasmodial activity of artecyclopentyl mether a new artemisinin derivative and its effect on pathogenesis in Plasmodium yoelii nigeriensis infected mice. Parasitol Res 109:1003–1008

    Article  PubMed  Google Scholar 

  • Agrawal J, Pal A (2013) Nyctanthes arbor-tristis Linn—a critical ethnopharmacological review. J Ethnopharmacol 146:645–658. doi:10.1016/j.jep.2013.01.024

    Article  PubMed  CAS  Google Scholar 

  • Allan JJ, Damodaran A, Deshmukh NS, Goudar KS, Amit A (2007) Safety evaluation of a standardized phytochemical composition extracted from Bacopa monnieri in Sprague–Dawley rats. Food Chem Toxicol 45:1928–1937

    Article  CAS  Google Scholar 

  • Bawankule DU, Chattopadhyay SK, Pal A, Saxena K, Yadav S, Faridi U, Darokar MP, Gupta AK, Khanuja SPS (2008) Modulation of inflammatory mediators by coumarinolignoids from Cleome viscosa in female Swiss albino mice. Inflammopharmacol 16:1–6

    Article  Google Scholar 

  • Chanda D, Shanker K, Pal A, Luqman S, Bawankule DU, Mani DN, Darokar MP (2009) Safety evaluation of Trikatu, a generic Ayurvedic medicine in Charles Foster rat. J Toxicol Sci 34:99–108

    Article  PubMed  CAS  Google Scholar 

  • Chopra RN, Chopra IC, Varma BS (1998) Supplement to glossary of Indian medicinal plants. Council of Scientific & Industrial Research, New Delhi, pp 63–64

    Google Scholar 

  • Clark IA, Budd AC, Alleva LM, Cowden WB (2006) Human malarial disease: a consequence of inflammatory cytokine release. Malar J 5:1–32

    Article  Google Scholar 

  • Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong MK, Chotivanich P, Lim T, Herdman SS, An S, Yeung P, Singhasivanon NP, Day J, Lindegardh N, Socheat D, White NJ (2009) Artemisinin resistance in Plasmodium falciparum malaria. New Engl J Med 361:455–467

    Article  PubMed  CAS  Google Scholar 

  • Eardman LK, Finney CAM, Liles WC, Kain KC (2008) Inflammatory pathways in malaria infection: TLRs share the stage with other components of innate immunity. Mol Biochem Parasitol 162:105–111

    Article  Google Scholar 

  • Formacek V, Kubeczka K (1982) Essential oil analysis by capillary chromatography and carbon-13 NMR spectroscopy. Wiley, New York, pp 155–160

    Google Scholar 

  • Franca CH, Benedicta BO, Astrid V, Irene AL, Abena SA, Adrian JFL, Daniel B, Maria Y (2008) Enhanced toll-like receptor responsiveness associated with mitogen-activated protein kinase activation in Plasmodium falciparum infected children. Infect Immun 76:5149–5157

    Article  Google Scholar 

  • Ghiware NB, Nesari TM, Gond NY (2007) Clinical validation of Piper nigrum and Nyctanthes arbor-tristis formulation for antimalarial activity. J Res Educ Indian Med 13:33–38

    Google Scholar 

  • Ghosh MN (1984) Fundamentals of experimental pharmacology, 1st edn. Scientific Book Agency, Kolkata, p 156

    Google Scholar 

  • Good MF, Xu H, Wykes M, Engwerda CR (2005) Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Ann Rev Immunol 23:69–99

    Article  CAS  Google Scholar 

  • Gupta S, Hill AVS, Kwiatkowski D, Greenwood AM, Greenwood BM, Day KP (1994) Parasite virulence and disease pattern in Plasmodium falciparum malaria. Proc Natl Acad Sci 91:3715–3719

    Article  PubMed  CAS  Google Scholar 

  • Jensen SR, Franzyk H, Wallander E (2002) Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers. Phytochem 60:213–231

    Article  CAS  Google Scholar 

  • Kantamreddi VSS, Parida S, Kommula SM, Wright CW (2009) Phytotherapy used in Orissa state, India for treating malaria. Phytother Res 23:1638–1641

    Article  PubMed  Google Scholar 

  • Karnik SR, Tathed PS, Antarkar DS, Gidse CS, Vaidya RA, Vaidya ADB (2008) Antimalarial activity and clinical safety of traditionally used Nyctanthes arbor-tristis Linn. Indian J Tradi Knowl 7:330–334

    Google Scholar 

  • Khadri A, Serralheiro MLM, Nogueira JMF, Neffati M, Smiti S, Araujo MEM (2008) Antioxidant and antiacetylcholinesterase activities of essential oils from Cymbopogon schoenanthus L. Spreng. Determination of chemical composition by GC–mass spectrometry and 13C NMR. Food Chem 109:630–637

    Article  CAS  Google Scholar 

  • Kirtikar KR, Basu BD (1935) In: Basu (ed) Indian medicinal plants. Sri Satguru, Allahabad, pp 1526–1528

    Google Scholar 

  • Konoshima T, Takasaki M, Tokuda H, Nishimo H (2000) Cancer chemopreventive activity of an iridoid glycoside, 8-acetylharpagide from Ajuga decumbens. Cancer Lett 157:87–92

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Pires D, Aínsa JA, Gracia B, Mulhovo S, Duarte A, Anes E, Ferreira MJ (2011) Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique. J Ethnopharmacol 137:114–120

    Article  PubMed  CAS  Google Scholar 

  • Muniz-Junqueira MI, Dos Santos-Neto LL, Tosta CE (2001) Influence of tumor necrosis factor-alpha on the ability of monocytes and lymphocytes to destroy intraerythrocytic Plasmodium falciparum in vitro. Cell Immunol 208:73–79

    Article  PubMed  CAS  Google Scholar 

  • Muniz-Junqueira MI, Silva FO, de Paula-Júnior MR, Tosta CE (2005) Thalidomide influences thefunction of macrophages and increases the survival of Plasmodium berghei-infected CBA mice. Acta Trop 94:128–138

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Lee JS, Sato Y, Kabe Y, Sakamoto S, Handa H, Mangindaan RE, Namikoshi M (2009) Inhibitory effect of N, N-didesmethylgrossularine-1 on inflammatory cytokine production in lipopolysaccharide-stimulated RAW 264.7 cells. Mar Drugs 7:589–599

    Article  PubMed  CAS  Google Scholar 

  • Politi M, Peschel W, Wilson N, Zloh M, Prieto JM, Heinrich M (2008) Direct NMR analysis of cannabis water extracts and tinctures and semiquantitative data on delta9-THC and delta9-THC-acid. Phytochem 69:562–570

    Article  CAS  Google Scholar 

  • Rasoanaivo P, Wright CW, Willcox ML, Gulbert B (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J 10(Supl 1):S4

    Article  PubMed  Google Scholar 

  • Shanker K, Singh M, Srivastava V, Verma RK, Gupta AK, Gupta MM (2011) Simultaneous analysis of six bioactive lignans in Phyllanthus species by reversed phase hyphenated high performance liquid chromatographic technique. Acta Chromatograph 23:321–337

    Article  CAS  Google Scholar 

  • Shibui A, Hozumi N, Shiraishi C, Sato Y, Iida H, Sugano S, Watanabe J (2009) CD4+ T cell response in early erythrocytic stage malaria: Plasmodium berghei infection in BALB/c and C57BL/6 mice. Parasitol Res 105:281–286

    Article  PubMed  Google Scholar 

  • Siddiqui AJ, Bhardwaj J, Puri SK (2012) mRNA expression of cytokines and its impact on outcomes after infection with lethal and nonlethal Plasmodium vinckei parasites. Parasitol Res 110:1517–1524

    Article  PubMed  Google Scholar 

  • Simonsen HT, Nordskjold JB, Smitt UW, Nyman U, Palpu P, Joshi P, Varughese G (2001) In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 74:195–204

    Article  PubMed  CAS  Google Scholar 

  • Singh KL, Roy R, Srivastava V, Tadon JS, Mishra R (1995) Arborside D, a minor iridoid glucoside from Nyctanthes arbor-tristis. J Nat Prod 58:1562–1564

    Article  CAS  Google Scholar 

  • Srivastava V, Rathore A, Ali SM, Tandon JS (1990) New benzoic esters of loganin and 6B-hydroxy loganin from Nyctanthes arbor-tristis. J Nat Prod 53(303):308

    Google Scholar 

  • Stevenson MM, Riley EM (2004) Innate immunity to malaria. Nat Rev Immunol 4:169–180

    Article  PubMed  CAS  Google Scholar 

  • Stevenson PC, Simmonds MSJ, Sampson J, Houghton PJ, Grice P (2002) Wound healing activity of acylated iridoid glycosides from Scrophularia nodosa. Phytother Res 16:33–35

    Article  PubMed  CAS  Google Scholar 

  • Stuppner H, Muller EP, Mathuram V, Kundu AB (1993) Iridoid glycosides from Nyctanthes arbor-tristis. Phytochem 32:375–378

    Article  CAS  Google Scholar 

  • Tandon JS, Srivastava V, Guru PY (1991) Iridoids: a new class of leishmanicidal agents from Nyctanthes arbor-tristis. J Nat Prod 54:1102–1104

    Article  PubMed  CAS  Google Scholar 

  • Tomi F, Bradesi P, Bighelli A, Casanova J (1995) Computer-aided identification of individual components of essential oils using carbon-13 NMR spectroscopy. J Magn Reson Anal 1:25–34

    Google Scholar 

  • Tuntiwachwuttikul P, Rayanil K, Taylon WC (2003) Chemical constituents from the flowers of Nyctanthes arbor-tristis. Sci Asia 29:21–30

    Article  CAS  Google Scholar 

  • Van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE (2006) A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 22:503–508

    Article  PubMed  Google Scholar 

  • Vijayavitthal TM, Kanwal R, Amiya PB, Ragini S, Anju P, Lalit MT, Vishwa MLS (1998) Studies on the profile of immunostimulant activities of modified iridoid glycosides. Bioorg Med Chem 6:605–611

    Article  Google Scholar 

  • Wu JJ, Chen G, Liu J, Wang T, Zheng W, Cao YM (2010) Natural regulatory T cells mediate the development of cerebral malaria by modifying the pro-inflammatory response. Parasitol Int 59:232–241

    Article  PubMed  CAS  Google Scholar 

  • Yan SF, Tritto I, Pinsky D, Liao H, Huang J, Fuller G, Brett J, May L, Stern D (1995) Induction of interleukin 6 by hypoxia in vascular cells. Central role of the binding site for nuclear factor IL-6. J Biol Chem 270:11463–11471

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Council of Scientific and Industrial Research for funding the research through Central Institute of Medicinal and Aromatic Plants and fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1

Characteristic UV spectra of important peaks from HPLC (JPEG 132 kb)

High resolution image (TIFF 311 kb)

Supplementary file 2

Parasitaemia kinetics of treated animals (JPEG 45 kb)

High resolution image (TIFF 47 kb)

Supplementary file 3

Haemoglobin levels of treated animals (JPEG 28 kb)

High resolution image (TIFF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, J., Shanker, K., Chanda, D. et al. Nyctanthes arbor-tristis positively affects immunopathology of malaria-infected mice prolonging its survival. Parasitol Res 112, 2601–2609 (2013). https://doi.org/10.1007/s00436-013-3427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3427-y

Keywords

Navigation