Parasitology Research

, Volume 112, Issue 7, pp 2495–2501 | Cite as

Diversity of Culex torrentium Martini, 1925 — a potential vector of arboviruses and filaria in Europe

  • Antje Werblow
  • Sarah Bolius
  • Adriaan W. C. Dorresteijn
  • Christian Melaun
  • Sven Klimpel
Original Paper

Abstract

Culex torrentium is one of the most common mosquito species in Germany. Due to its sympatric occurrence as well as its similar morphological and ecological characteristics, it has often been confused with another common species, Culex pipiens. Both species are known to be potential vectors for different arboviruses (not only in Germany) with C. torrentium being a possible vector for Sindbis or Ockelbo virus. In our study, we analyzed the genetic variability in a 658 bp fragment of the cytochrome c oxidase subunit I gene (coxI) of C. torrentium, from nine localities in the Frankfurt/Rhine-Main Metropolitan Region. The results of our genetic survey indicate a higher genetic diversity in this gene region for C. torrentium than for the morphologically similar C. pipiens. Our findings may explain the difficulties in the past to find morphological characteristics that apply to all populations of C. torrentium, when attempting to separate them clearly from C. pipiens, by any other criteria than male genitalia. Being ornithophilic, possible hybrids between C. torrentium and the humanophilic C. pipiens biotype molestus, could potentially serve as important vectors for zoonotic diseases. Therefore, we recommend that greater emphasis is placed on the ecological characteristics, population structure, and the taxonomy of this often neglected species, in the future.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744PubMedCrossRefGoogle Scholar
  3. Becker N, Hoffmann D (2011) First record of Culiseta longiareolata (Marcquart) for Germany. Eur Mosq Bull 29:143–150Google Scholar
  4. Becker N, Petrić D, Zgomba M, Boase C, Dahl C, Lane J, Kaiser A (2010) Mosquitoes and their control, 2nd edn. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  5. Berger R (2011) Stechmücken (Culicidae) des Rhein-Main-Gebietes — Ökologie, Biologie, und medizinische Bedeutung. Diploma thesis of the Goethe University Frankfurt, GermanyGoogle Scholar
  6. Czajka C, Becker N, Poppert S, Jöst H, Schmidt-Chanasit J, Krüger A (2012) Molecular detection of Setaria tundra (Nematoda: Filarioidea) and an unidentified filarial species in mosquitoes in Germany. Parasit Vectors 5:14. doi:10.1186/1756-3305-5-14 PubMedCrossRefGoogle Scholar
  7. Dahl C (1988) Taxonomic studies on Culex pipiens and Culex torrentium. In: Service MW (ed) Biosystematics of haematophagous insects, vol 37, Systematics association special volume. Claredon Press, Oxford, pp 149–175Google Scholar
  8. Federova MV, Shaikevich EV (2007) Morphological and molecular-genetic distinctions between adult mosquitoes Culex torrentium Martini and C. pipiens Linnaeus (Diptera, Culicidae) from Moscow province. Entomol Rev 87:127–135CrossRefGoogle Scholar
  9. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–297PubMedGoogle Scholar
  10. Gillies MT, Gubbins SJ (1982) Culex (Culex) torrentium Martini and Cx. (Cx.) pipiens L. in a southern English county, 1974–1975. Mosq Syst 14:127–130Google Scholar
  11. Guillemand T, Pasteus N, Rousset F (1997) Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens. Proc R Soc Lond B 264:245–251CrossRefGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hemmerter S, Šlapeta J, Beebe NW (2009) Resolving genetic diversity in Australasian Culex mosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Mol Phylogenet Evol 50:317–325PubMedCrossRefGoogle Scholar
  14. Hesson JC, Östman Ö, Schäfer M, Lundström JÖ (2011) Geographic distribution and relative abundance of the sibling vector species Culex torrentium and Culex pipiens in Sweden. Vector Borne Zoonotic Dis 11:1383–1389PubMedCrossRefGoogle Scholar
  15. Ishii T, Sohn SR (1987) Highly polluted larval habitats of the Swedish Culex pipiens complex in Sweden. J Am Mosq Contr 3:276–281Google Scholar
  16. Ivanova NV, deWaard J, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002CrossRefGoogle Scholar
  17. Jöst H, Bialonski A, Storch V, Günther S, Becker N, Schmidt-Chanasit J (2010) Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany. J Clin Microbiol 48:1900–1903PubMedCrossRefGoogle Scholar
  18. Laven H (1951) Crossing experiments with Culex strains. Evolution 5:370–375CrossRefGoogle Scholar
  19. Lin CP, Danforth BN (2004) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol Phylogenet Evol 30:686–702PubMedCrossRefGoogle Scholar
  20. Lundström JO (1994) Vector competence of Western European mosquitoes for arboviruses: a review of field and experimental studies. Bull Soc Vector Ecol 19:23–26Google Scholar
  21. Lundström JO (1999) Mosquito-borne viruses in Western Europe: a review. J Vector Ecol 24:1–39PubMedGoogle Scholar
  22. Lundström JO, Niklasson B, Francy DB (1990a) Swedish Culex torrentium and Cx. pipiens (Diptera: Culicidae) as experimental vectors of Ockelbo virus. J Med Entomol 27:561–563PubMedGoogle Scholar
  23. Lundström JO, Turell MJ, Niklasson B (1990b) Effect of environmental temperature on the vector competence of Culex pipiens and C. torrentium for Ockelbo virus. Am J Trop Med Hyg 43:534–542Google Scholar
  24. Magnin M, Pasteur N, Raymond M (1987) Multiple incompatibilities within populations of Culex pipiens L. in southern France. Genetica 74:125–130PubMedCrossRefGoogle Scholar
  25. Maia RT, Scarpassa VM, Maciel-Litaiff LH, Tadei WP (2009) Reduced levels of genetic variation in Aedes albopictus (Diptera: Culicidae) from Manaus, Amazonas State, Brazil, based on analysis of the mitochondrial DNA ND5 gene. Genet Mol Res 8:998–1007PubMedCrossRefGoogle Scholar
  26. Martini E (1925) Zwei bemerkenswerte Culiciden von einem eigenartigen Biotop. Internat Rev Hydrobiol 12:333–337CrossRefGoogle Scholar
  27. Miller BR, Crabtree MB, Savage HM (1996) Phylogeny of fourteen Culex mosquito species, including the Culex pipiens complex, inferred from the internal transcribed spacers of ribosomal DNA. Insect Mol Biol 5:93–107PubMedCrossRefGoogle Scholar
  28. Mohrig W (1969) Die Culiciden Deutschlands. Parasitologische Schriftenreihe 18. Gustav Fischer Verlag, JenaGoogle Scholar
  29. Onyeka JOA (1982) The taxonomic value of pre-alar scales in the identification of Culex (Culex) pipiens L. and Culex (Cx.) torrentium. Mosq Syst 14:41–52Google Scholar
  30. Raymond M (1995) On the breeding period of Culex pipiens and C. torrentium (Diptera, Culicidae) in Uppsala, Sweden. Entomol Tidskr 116:65–66Google Scholar
  31. Scarpassa VM, Cardoza TB, Cardoso Junior RP (2008) Population genetics and phylogeography of Aedes aegypti (Diptera: Culicidae) from Brazil. Am J Trop Med Hyg 78:895–903PubMedGoogle Scholar
  32. Schäfer ML, Lundström JO, Pfeffer M, Lundkvist E, Ladin J (2004) Biological diversity versus risk for mosquito nuisance and disease transmission in constructed wetlands in southern Sweden. Med Vet Entomol 18:256–267PubMedCrossRefGoogle Scholar
  33. Scherpner C (1960) Zur Ökologie und Biologie der Stechmücken des Gebietes von Frankfurt am Main (Diptera, Culicidae). Mitt Zool Mus Berlin 36:49–99CrossRefGoogle Scholar
  34. Service MW (1968) The taxonomy and biology of two sympatric sibling species of Culex, C. pipiens, and C. torrentium (Diptera, Culicidae). J Zool Lond 156:313–323CrossRefGoogle Scholar
  35. Shaikevich EV (2007) PCR-RFLP of the COI gene reliably differentiates C. pipiens, C. pipiens f. molestus, and C. torrentium of the pipiens complex. Eur Mosq Bull 23:25–30Google Scholar
  36. Smith JL, Fonseca DM (2004) Rapid assay for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70:339–345PubMedGoogle Scholar
  37. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  38. Vinogradova EB, Shaikevich EV, Ivanitsky AV (2007) A study of the distribution of the Culex pipiens complex (Insecta: Diptera: Culicidae) mosquitoes in the European part of Russia by molecular methods of identification. Comp Cytogenet 1:129–138Google Scholar
  39. von Struppe T (1989) Biologie und Ökologie von Culex torrentium Martini unter besonderer Berücksichtigung seiner Beziehungen im menschlichen Siedlungsbereich. Angew Zool 3:257–286Google Scholar
  40. Weitzel T, Collado A, Jöst A, Pietsch K, Storch V, Becker N (2009) Genetic differentiation of populations within the Culex pipiens complex and phylogeny of related species. J Am Mosq Control Assoc 25:6–17PubMedCrossRefGoogle Scholar
  41. Weitzel T, Braun K, Collado A, Jöst A, Becker N (2011) Distribution and frequency of Culex pipiens and Culex torrentium (Culicidae) in Europe and diagnostic allozyme markers. Eur Mosq Bull 29:22–37Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antje Werblow
    • 1
    • 2
  • Sarah Bolius
    • 1
    • 3
  • Adriaan W. C. Dorresteijn
    • 3
  • Christian Melaun
    • 1
    • 2
  • Sven Klimpel
    • 1
  1. 1.Biodiversity and Climate Research Centre (BiK-F), Medical Biodiversity and Parasitology; Goethe-University (GO)Institute for Ecology, Evolution and Diversity; Senckenberg Gesellschaft für Naturforschung (SGN)Frankfurt am MainGermany
  2. 2.Senckenberg German Entomological Institute (SDEI)MünchebergGermany
  3. 3.Institute for General Zoology and Developmental BiologyJustus Liebig University (JLU)GiessenGermany

Personalised recommendations