Skip to main content

Advertisement

Log in

Peritrophic matrix formation and Brugia malayi microfilaria invasion of the midgut of a susceptible vector, Ochlerotatus togoi (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The mosquito midgut is the first site that vector-borne pathogens contact during their multiplication, differentiation, or migration from blood meal to other tissues before transmission. After blood feeding, the mosquitoes synthesize a chitinous structure called peritrophic matrix (PM) that envelops the blood meal and separates the food bolus from the midgut epithelium. In this study, a systematic investigation of the PM formation and the interaction of Brugia malayi within the midgut of a susceptible vector, Ochlerotatus togoi, were performed using scanning electron microscopy (SEM). SEM analysis of the midguts dissected at different time points post feeding on a B. malayi-infected blood meal (PIBM) revealed that the PM was formed from 45 min PIBM and gradually thickened and matured during 8–18 h PIBM. The PM degraded from 24 to72 h PIBM, when digestion was completed. The invasion process of the microfilariae was observed between 3 and 4 h PIBM. In the beginning of the process, only sheathed microfilariae interacted with the internal face of the PM by its anterior part, and then the midgut epithelium before entering the hemocoel, after that they exsheathed. Microfilarial sheaths lying within the hemocoel were observed suggesting that they may serve as a decoy to induce the immune systems of the mosquitoes to respond to the antigens on the sheaths, thereby protecting the exsheathed microfilariae. These initial findings would lead to further study on the proteins, chemicals, and factors in the midgut that are involved in the susceptibility of O. togoi as a vector of filariasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agudelo-Silva F, Spielman A (1985) Penetration of mosquito midgut wall by sheathed microfilariae. J Invertebr Pathol 45:117–119

    Article  PubMed  CAS  Google Scholar 

  • Bain O, Brengues J (1972) Transmission of wuchereriasis and of bovine setariasis: histological study of the passage of microfilariae through the stomach wall of Anopheles gambiae and Aedes aegypti. Ann Parasitol Hum Comp 47:399–412

    PubMed  CAS  Google Scholar 

  • Bain O, Philippon B (1969) Mechanism of passing microfilaria through the stomach wall of a vector: its importance in onchocerciasis. C R Acad Sci Hebd Seances Acad Sci D 269:1081–1083

    PubMed  CAS  Google Scholar 

  • Bangs MJ, Ash LR, Barr AR (1995) Susceptibility of various mosquitoes of California to subperiodic Brugia malayi. Acta Trop 59:323–332

    Article  PubMed  CAS  Google Scholar 

  • Billingsley PF (1994) Approaches to vector control: new and trusted. 2. Molecular targets in the insect midgut. Trans R Soc Trop Med Hyg 88:136–140

    Article  PubMed  CAS  Google Scholar 

  • Blackburn K, Wallbanks KR, Molyneux DH, Lavin DR, Winstanley SL (1988) The peritrophic membrane of the female sandfly Phlebotomus papatasi. Ann Trop Med Parasitol 82:613–619

    PubMed  CAS  Google Scholar 

  • Chen CC, Shih CM (1988) Exsheathment of microfilariae of Brugia pahangi in the susceptible and refractory strains of Aedes aegypti. Ann Trop Med Parasitol 82:201–206

    PubMed  CAS  Google Scholar 

  • Cheun HI, Cho SH, Lee HI, Shin EH, Lee JS, Kim TS, Lee WJ (2011) Seasonal prevalence of mosquitoes, including vectors of Brugian filariasis, in southern islands of the Republic of Korea. Korean J Parasitol 49:59–64

    Article  PubMed  Google Scholar 

  • Chang MS, Chan KL, Ho BC (1991) Comparative transmission potential of three Mansonia mosquitoes (Diptera: Culicidae) for filariasis in Sarawak, Malaysia. Bull Entomol Res 81:437–444

    Article  Google Scholar 

  • Chomcharn Y, Surathin K, Bunnag D, Sucharit S, Harinasuta T (1980) Effect of a single dose of primaquine on a Thai strain of Plasmodium falciparum. Southeast Asian J Trop Med Public Health 11:408–412

    PubMed  CAS  Google Scholar 

  • Choochote W, Chaithong U, Somboon P, Pakdicharoen A, Tookyang B, Likitvong K, Siriprasert V, Sukontasan K, Thitasut P (1991) Small laboratory animal model for nocturnally subperiodic Brugia malayi (Narathiwat province, southern Thailand strain). J Trop Med Parasitol 14:51–58

    Google Scholar 

  • Choochote W, Keha P, Sukhavat K, Khamboonruang C, Sukontason K (1987) Aedes (Finlaya) togoi Theobald 1907, Chanthaburi strain. A laboratory vector in studies of filariasis in Thailand. Southeast Asian J Trop Med Public Health 18:259–260

    PubMed  CAS  Google Scholar 

  • Choochote W, Sucharit S, Abeywickreme W (1983) A note on adaptation of Anopheles annularis Van Der Wulp, Kanchanaburi, Thailand to free mating in a 30 × 30 ×30 cm cage. Southeast Asian J Trop Med Public Health 14:559–560

    PubMed  CAS  Google Scholar 

  • Choochote W, Sukhavat K, Somboon P, Khamboonruang C, Maleewong W, Suwanpanit P (1986) The susceptibility of small laboratory animals to nocturnally superiodic Brugia malayi in Thailand. J Parasitol Trop Med Assoc Thailand 9:35–37

    Google Scholar 

  • Christensen BM, Sutherland DR (1984) Brugia pahangi: exsheathment and midgut penetration in Aedes aegypti. Trans Amer Microscop Soc 4:423–433

    Article  Google Scholar 

  • Crampton JM, Warren A, Lycett GJ, Hughes MA, Comley IP, Eggleston P (1994) Genetic manipulation of insect vectors as a strategy for the control of vector-borne disease. Ann Trop Med Parasitol 88:3–12

    PubMed  CAS  Google Scholar 

  • Di Luca M, Romi R, Severini F, Toma L, Musumeci M, Fausto AM, Mazzini M, Gambellini G, Musumeci S (2007) High levels of human chitotriosidase hinder the formation of peritrophic membrane in anopheline vectors. Parasitol Res 100:1033–1039

    Article  PubMed  Google Scholar 

  • Esslinger JH (1962) Behavior of microfilaria of Brugia pahangi in Anopheles quadrimaculatus. AmJTrop Med Hyg 11:749–758

    Google Scholar 

  • Freyvogel T, Staubli W (1965) The formation of the peritrophic membrane in Culicidae. Acta Trop 22:118–147

    PubMed  CAS  Google Scholar 

  • Guptavanij P, Harinasuta C, Vutikes S, Deesin T, Surathin K (1978) The vectors of Brugia malayi in southern Thailand. Southeast Asian J Trop Med Public Health 9:543–548

    PubMed  CAS  Google Scholar 

  • Gwadz RW (1994) Genetic approaches to malaria control: how long the road? AmJTrop Med Hyg 50:116–125

    CAS  Google Scholar 

  • Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302

    Article  PubMed  CAS  Google Scholar 

  • Houk EJ, Obie F, Hardy JL (1979) Peritrophic membrane formation and the midgut barrier to arboviral infection in the mosquito, Culex tarsalis Coquillett (Insecta, Diptera). Acta Trop 36:39–45

    PubMed  CAS  Google Scholar 

  • Iyengar MOT (1936) Entry of filaria larvae into the body cavity of the mosquito. Parasitol 28:190–195

    Article  Google Scholar 

  • Jacobs-Lorena M, Oo MM (1996) The peritrophic matrix of insects. In: Beaty J, Marquardt WC (eds) The biology of disease vectors. University Press of Colorado, Boulder, pp 318–332

    Google Scholar 

  • Kumar NP, Sabesan S, Panicker KN (1998) Susceptibility status of Mansonia annulifera to Brugia malayi parasites in Cherthala, Alappuzha district, Kerala. Indian J Exp Biol 36:829–831

    PubMed  CAS  Google Scholar 

  • Laurence BR (1966) Intake and migration of the microfilariae of Onchocerca volvulus (Leuckart) in Simulium damnosum Theobald. J Helminthol 50:337–342

    Article  Google Scholar 

  • Laurence BR, Pester FRN (1961) The behavior and development of Brugia patei (Buckley, Nelson and Heisch, 1958) in a mosquito host, Mansonia uniformis (Theobald). J Helminthol 35:285–300

    Article  PubMed  CAS  Google Scholar 

  • Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550

    Article  PubMed  CAS  Google Scholar 

  • Lek-Uthai U, Tomoen W (2005) Susceptibility of Mansonia uniformis to Brugia malayi microfilariae from infected domestic cat. Southeast Asian J Trop Med Public Health 36:434–441

    PubMed  Google Scholar 

  • Luo H, Qu FY (1990) Experimental infection index of Anopheles sinensis and melanization of periodic Brugia malayi. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 8:260–263

    PubMed  CAS  Google Scholar 

  • Meis JF, Ponnudurai T (1987) Ultrastructural studies on the interaction of Plasmodium falciparum ookinetes with the midgut epithelium of Anopheles stephensi mosquitoes. Parasitol Res 73:500–506

    Article  PubMed  CAS  Google Scholar 

  • Meis JF, Pool G, van Gemert GJ, Lensen AH, Ponnudurai T, Meuwissen JH (1989) Plasmodium falciparum ookinetes migrate intercellularly through Anopheles stephensi midgut epithelium. Parasitol Res 76:13–19

    Article  PubMed  CAS  Google Scholar 

  • O’Connor FW, Beatty H (1936) The early migrations of Wuchereria bancrofti in Culex fatigans. Trans R Soc Trop Med Hyg 30:125–127

    Article  Google Scholar 

  • Okuda K, Caroci A, Ribolla P, Marinotti O, de Bianchi AG, Bijovsky AT (2005) Morphological and enzymatic analysis of the midgut of Anopheles darlingi during blood digestion. J Insect Physiol 51:769–776

    Article  PubMed  CAS  Google Scholar 

  • Pascoa V, Oliveira PL, Dansa-Petretski M, Silva JR, Alvarenga PH, Jacobs-Lorena M, Lemos FJA (2002) Aedes aegypti peritrophic matrix and its interaction with heme during blood digestion. Insect Biochem Mol 32:517–523

    Article  CAS  Google Scholar 

  • Perrone JB, Spielman A (1986) Microfilarial perforation of the midgut of a mosquito. J Parasitol 72:723–727

    Article  PubMed  CAS  Google Scholar 

  • Perrone JB, Spielman A (1988) Time and site of assembly of the peritrophic membrane of the mosquito Aedes aegypti. Cell Tissue Res 252:473–478

    Article  PubMed  CAS  Google Scholar 

  • Peters W (1992) Peritrophic membranes. In: Bradshaw D, Burggren W, Heller HC, Ishii S, Langer H, Neuweiler G, Randall DJ (eds) Zoophysiology. Springer-Verlag, Berlin, pp 1–238

    Google Scholar 

  • Petit G (1978) The filaria Dipetalonema dessetae: phenomena of regulation and parasite yield in the Aedes vector. Ann Parasitol Hum Comp 53:649–668

    PubMed  CAS  Google Scholar 

  • Petit G, Spitalier-Kaveh H (1979) The Filaria Breinlia booliati in the Aedes togoi adipose tissue; comparison with the couple Dipetalonema dessetae-A. aegypti. Ann Parasitol Hum Comp 54:653–663

    PubMed  CAS  Google Scholar 

  • Ramachandran CP, Wharton RH, Dunn FL, Kershaw WE (1963) Aedes (Finlaya) togoi Theobold, a useful laboratory vector in studies of filariasis. Ann Trop Med Parasitol 57:443–445

    PubMed  CAS  Google Scholar 

  • Sadlova J, Volf P (2009) Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development. Cell Tissue Res 337:313–325

    Article  PubMed  CAS  Google Scholar 

  • Sanders HR, Evans AM, Ross LS, Gill SS (2003) Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. Insect Biochem Mol Biol 33:1105–1122

    Article  PubMed  CAS  Google Scholar 

  • Santos JN, Lanfredi RM, Pimenta PF (2006) The invasion of the midgut of the mosquito Culex (Culex) quinquefasciatus Say, 1823 by the helminth Litomosoides chagasfilhoi Moraes Neto, Lanfredi and De Souza, 1997. J Invertebr Pathol 93:1–10

    Article  PubMed  CAS  Google Scholar 

  • Sasa M (1976) Human filariasis: a global survey of epidemiology and control. Tokyo. University of Tokyo Press, Tokyo, p 819

    Google Scholar 

  • Schacher JF (1962) Morphology of the microfilaria of Brugia pahangi and of the larval stages in the mosquito. J Parasitol 48:679–692

    Article  PubMed  CAS  Google Scholar 

  • Secundino NFC, Eger-Mangrich I, Braga EM, Santoro MM, Pimenta PFP (2005) Lutzomyia longipalpis peritrophic matrix: formation, structure, and chemical composition. J Med Entomol 42:928–938

    Article  PubMed  CAS  Google Scholar 

  • Shahabuddin M, Cociancich S, Zieler H (1998) The search for novel malaria transmission-blocking targets in the mosquito midgut. Parasitol Today 14:493–497

    Article  PubMed  CAS  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1997) Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae. J Biol Chem 272:28895–28900

    Article  PubMed  CAS  Google Scholar 

  • Shih CM, Chen CC (1987) Exsheathment of microfilariae of Brugia pahangi in Anopheles quadrimaculatus and Culex quinquefasciatus. Southeast Asian J Trop Med Public Health 18:521–525

    PubMed  CAS  Google Scholar 

  • Singh RN, Rathaur S (2003) Setaria cervi: in vitro released collagenases and their inhibition by Wuchereria bancrofti infected sera. J Helminthol 77:77–81

    Article  PubMed  CAS  Google Scholar 

  • Smartt CT, Chiles J, Lowenberger C, Christensen BM (1998) Biochemical analysis of a blood meal-induced Aedes aegypti glutamine synthetase gene. Insect Biochem Mol Biol 28:935–945

    Article  PubMed  CAS  Google Scholar 

  • Syafruddin AR, Kamimura K, Kawamoto F (1991) Penetration of the mosquito midgut wall by the ookinetes of Plasmodium yoelii nigeriensis. Parasitol Res 77:230–236

    Article  PubMed  CAS  Google Scholar 

  • Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101

    Article  PubMed  CAS  Google Scholar 

  • Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61

    Article  PubMed  CAS  Google Scholar 

  • Trpis M (1981) Susceptibility of the autogenous group of the Aedes scutellaris complex of mosquitoes to infection with Brugia malayi and Brugia pahangi. Tropenmed Parasitol 32:184–188

    PubMed  CAS  Google Scholar 

  • Villalon JM, Ghosh A, Jacobs-Lorena M (2003) The peritrophic matrix limits the rate of digestion in adult Anopheles stephensi and Aedes aegypti mosquitoes. J Insect Physiol 49:891–895

    Article  PubMed  CAS  Google Scholar 

  • Wada Y (2011) Vector mosquitoes of filariasis in Japan. Trop Med Health 39:39–45

    PubMed  Google Scholar 

  • Walters LL, Irons KP, Guzman H, Tesh RB (1993) Formation and composition of the peritrophic membrane in the sand fly, Phlebotomus perniciosus (Diptera: Psychodidae). J Med Entomol 30:179–198

    PubMed  CAS  Google Scholar 

  • Wu Y, Preston G, Bianco AE (2008) Chitinase is stored and secreted from the inner body of microfilariae and has a role in exsheathment in the parasitic nematode Brugia malayi. Mol Biochem Parasitol 161:55–62

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Ogura N, Kobayashi M, Chigusa Y (1983) Studies on filariasis II: exsheathment of the microfilariae of Brugia pahangi in Armigeres subalbatus. Jpn J Parasitol 32:287–292

    Google Scholar 

  • Zhu Z, Gern L, Aeschlimann A (1991) The peritrophic membrane of Ixodes ricinus. Parasitol Res 77:635–641

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund (TRF Senior Research Scholar: RTA5480006 to WC, subproject to NJ) and the Faculty of Medicine, Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narissara Jariyapan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jariyapan, N., Saeung, A., Intakhan, N. et al. Peritrophic matrix formation and Brugia malayi microfilaria invasion of the midgut of a susceptible vector, Ochlerotatus togoi (Diptera: Culicidae). Parasitol Res 112, 2431–2440 (2013). https://doi.org/10.1007/s00436-013-3404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3404-5

Keywords

Navigation