Skip to main content

Advertisement

Log in

In vitro evaluation of the effectiveness of new water-stable cationic carbosilane dendrimers against Acanthamoeba castellanii UAH-T17c3 trophozoites

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Acanthamoeba is one of the most common free-living amoebas which is widespread in the environment and can infect humans, causing diseases such as keratitis and encephalitis. In this paper we examine for the first time the amebicidal activity of the family of cationic dendrimers nG-[Si{(CH2)3N+(Me)(Et)(CH2)2NMe3 +}2I] x (where n denotes the generations: zero (n = 0, x = 1), first (n = 1, x = 4), and second (n = 2, x = 8); for simplicity, they were named as 0G-CNN2, 1G-CNN8, and 2G-CNN16, respectively) against Acanthamoeba castellanii UAH-T17c3 trophozoites. In order to test the amebicidal activity, we cultured the strain A. castellanii UAH-T17c3 in PYG-Bactocasitone medium and later, we treated it with different concentrations of these dendrimers and monitored the effects and damage by optical count, flow cytometry, and scanning electron microscopy. The results showed that all the nanosystems assayed had a strong amebicidal activity. The dendrimer 1G-CNN8 was the most effective against the amoeba. In the morphology of treated throphozoites of A. castellanii UAH-T17c3 analyzed by light and scanning electron microscopy techniques, morphological changes were evident in amoeba cells, such as loss of pseudopodia, ectoplasm increase, roundness, and cellular lysis. Furthermore, flow cytometry results showed alterations in cell granularity, which was dose–time dependent. In conclusion, this family of cationic carbosilane dendrimers has a strong amebicidal activity against the trophozoites of A. castellanii UAH-T17c3 in vitro. They could potentially become new agents significant to the development of new amebicidal compounds for prevention and therapy of Acanthamoeba infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aksozek A, McClellan K, Howard K, Niederkorn JY, Alizadeh H (2002) Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. J Parasitol 88:621–623

    PubMed  CAS  Google Scholar 

  • Astorga B, Lorenzo-Morales J, Martín-Navarro CM, Alarcón V, González AC, Navarrete E, Piñero JE, Valladares B (2011) Acanthamoeba belonging to T3, T4, and T11: genotypes isolated from air-conditioning units in Santiago, Chile. Eukaryot Microbiol 58:542–544

    Article  Google Scholar 

  • Bermejo JF, Ortega P, Chonco L, Eritja R, Samaniego R, Müllner M, de Jesus E, de la Mata FJ, Flores JC, Gomez R, Muñoz-Fernandez A (2007) Water-soluble carbosilano dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chemistry 13:483–495

    Article  PubMed  CAS  Google Scholar 

  • Booton GC, Rogerson A, Bonilla TD, Seal DV, Beattie TK, Tomlinson A, Lares-Villa F, Fuerst PA, Byers TJ (2004) Molecular and physiological evaluation of subtropical environmental isolates of Acanthamoeba spp., causal agent of Acanthamoeba keratitis. J Eukaryot Microbiol 51:192–200

    Article  PubMed  CAS  Google Scholar 

  • Bouyer S, Imbert C, Daniault G, Cateau E, Rodier MH (2007) Effect of caspofungin on trophozoites and cysts of three species of Acanthamoeba. J Antimicrob Chemother 59:122–124

    Article  PubMed  CAS  Google Scholar 

  • Cabral M, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307

    Article  PubMed  Google Scholar 

  • Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL (2000) Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules 1:473–480

    Article  PubMed  CAS  Google Scholar 

  • Chomicz L, Padzik M, Graczyk Z, Starosciak B, Graczyk TK, Naprawska A, Oledzka G, Szostakowska B (2010) Acanthamoeba castellanii: in vitro effects of selected biological, physical and chemical factors. Exp Parasitol 126:103–105

    Article  PubMed  CAS  Google Scholar 

  • Chu DM, Miles H, Toney D, Ngyuen C, Marciano-Cabral F (1998) Amebicidal activity of plant extracts from Southeast Asia on Acanthamoeba spp. Parasitol Res 84:746–752

    Article  PubMed  CAS  Google Scholar 

  • Daggett PM, Sawyer TK, Nerad TA (1982) Distribution and possible interrelationships of pathogenic and nonpathogenic Acanthamoeba from aquatic environments. Microb Ecol 8:371–386

    Article  Google Scholar 

  • De Jonckheere JF (1991) Ecology of Acanthamoeba. Rev Infect Dis 13:385–387

    Article  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera GA, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Ficker L, Seal D, Warhurst D, Wright P (1990) Acanthamoeba keratitis-resistance to medical therapy. Eye 4:835–838

    Article  PubMed  Google Scholar 

  • Fürnkranz U, Nagl M, Gottardi W, Köhsler M, Aspöck H, Walochnik J (2008) Cytotoxic activity of N-chlorotaurine on Acanthamoeba spp. Antimicrob Agents Chemother 52:470–476

    Article  PubMed  Google Scholar 

  • Heredero-Bermejo I, San Juan Martín C, Soliveri de Carranza J, Copa-Patiño JL, Pérez-Serrano J (2012) Acanthamoeba castellanii: in vitro UAH-T17c3 trophozoite growth study in different culture media. Parasitol Res 110:2563–2567

    Article  PubMed  CAS  Google Scholar 

  • John DT, John RA (1996) Viability of pathogenic Acanthamoeba and Naegleria and virulence of N. fowleri during long-term cryopreservation. Folia Parasitol 43:43–46

    PubMed  CAS  Google Scholar 

  • Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30:564–595

    Article  PubMed  Google Scholar 

  • Khan NA (2009) Acanthamoeba. Biology and pathogenesis. Caister Academic, Norfolk

    Google Scholar 

  • Kilvington S, White DG (1994) Acanthamoeba biology, ecology and human disease. Rev Med Microbiol 5:12–20

    Article  Google Scholar 

  • Martinez AJ, Janitschke K (1985) Acanthamoeba, an opportunistic microorganism: a review. Infection 13:251–256

    Article  PubMed  CAS  Google Scholar 

  • Martinez AJ, Visvesvara GS (1997) Free-living, amphizoic and opportunistic amebas. Brain Pathol 7:583–598

    Article  PubMed  CAS  Google Scholar 

  • Mattana A, Biancu G, Alberti L, Accardo A, Delogu G, Fiori PL, Cappuccinelli P (2004) In vitro evaluation of the effectiveness of the macrolide rokitamycin and chlorpromazine against Acanthamoeba castellanii. Antimicrob Agents Chemother 48:4520–4527

    Article  PubMed  CAS  Google Scholar 

  • Mintzer M, Grinstaff M (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190

    Article  PubMed  CAS  Google Scholar 

  • Mogoa E, Bodet C, Legube B, Héchard Y (2010) Acanthamoeba castellanii: cellular changes induced by chlorination. Exp Parasitol 126:97–102

    Article  PubMed  CAS  Google Scholar 

  • Ortega P, Copa-Patiño JL, Muñóz-Fernández MA, Soliveri J, Gómez R, de la Mata FJ (2008) Amine and ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies. Org Biomol Chem 6:3264–3269

    Article  PubMed  CAS  Google Scholar 

  • Rasines B, Hernández-Ross JM, de las Cuevas N, Copa-Patiño JL, Soliveri J, Muñoz-Fernandez MA, Gomez R, de la Mata FJ (2009) Water-stable ammonium-terminated carbosilane dendrimers as efficient antibacterial agents. Dalton Trans 28:8704–8713

    Article  Google Scholar 

  • Ródio C, da Rocha Vianna VD, Kowalski KP, Panatieri LF, von Poser G, Rott MB (2008) In vitro evaluation of the amebicidal activity of Pterocaulon polystachyum (Asteraceae) against trophozoites of Acanthamoeba castellanii. Parasitol Res 104:191–194

    Article  PubMed  Google Scholar 

  • Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature resistance. Appl Environ Microbiol 64:1822–1824

    PubMed  CAS  Google Scholar 

  • Romero EL, Morilla MJ (2010) Nanotechnological approaches against Chagas disease. Adv Drug Deliv Rev 62:576–588

    Article  PubMed  CAS  Google Scholar 

  • Santos-Magalhaes NS, Mosqueira VC (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 62:560–575

    Article  PubMed  CAS  Google Scholar 

  • Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027

    Article  PubMed  Google Scholar 

  • Sheng WH, Hung CC, Huang HH, Liang SY, Cheng YJ, Ji DD, Chang SC (2009) Case report: first case of granulomatous amebic encephalitis caused by Acanthamoeba castellanii in Taiwan. Am J Trop Hyg 81:277–279

    Google Scholar 

  • Visvesvara GS, Sterh-Green JK (1990) Epidemiology of free-living ameba infections. J Eukaryot Microbiol 37:25–33

    Article  Google Scholar 

  • Walochnik J, Obwaller A, Gruber F, Mildner M, Tschachler E, Suchomel M, Duchêne M, Auer H (2009) Anti-Acanthamoeba efficacy and toxicity of miltefosine in an organotypic skin equivalent. J Antimicrob Chemother 64:539–545

    Article  PubMed  CAS  Google Scholar 

  • Weber N, Ortega P, Clemente MI, Shcharbin D, Bryszewska M, de la Mata FJ, Gómez R, Muñoz-Fernández MA (2008) Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV infected lymphocytes. J Control Release 132:55–64

    Article  PubMed  CAS  Google Scholar 

  • Winck MA, Caumo K, Rott MB (2011) Prevalence of Acanthamoeba from tap water in riogrande do Sul, Brazil. Curr Microbiol 63:464–469

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Mrs. Isabel Trabado for the technical assistance from Cell Culture Unit (CAI Medicina y Biología de la Universidad de Alcala), Mr. Antonio Priego and Mr. Jose Antonio Pérez for scanning electron microscopy assistance (CAI Medicina y Biología de la Universidad de Alcala), Mr. Angel Pueblas for the photography support from the Photography Unit (CAI Medicina y Biología de la Universidad de Alcala), and Prof. Angel Criado and Andreas Britz for language assistance.

This work was supported by the grants provided by a fellowship from the Ministerio de Educación y Ciencia (FPU ref. AP2010-1471), and the Consejería de Educación de la Comunidad de Madrid and Fondo Social Europeo (F.S.E.) for S.G.G. Fondos de Investigación Sanitaria (FIS) (PI080222), CTQ2011-23245 (MEyC), Consorcium NANODENDMED ref. S2011/BMD-2351 (CAM), and CIBER-BBN to U.A. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pérez-Serrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heredero-Bermejo, I., Copa-Patiño, J.L., Soliveri, J. et al. In vitro evaluation of the effectiveness of new water-stable cationic carbosilane dendrimers against Acanthamoeba castellanii UAH-T17c3 trophozoites. Parasitol Res 112, 961–969 (2013). https://doi.org/10.1007/s00436-012-3216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3216-z

Keywords

Navigation