Skip to main content
Log in

Ribose-phosphate pyrophosphokinase 1 (PRPS1) associated with deltamethrin resistance in Culex pipiens pallens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Ribose-phosphate pyrophosphokinase 1 (PRPS1) was identified and isolated as a differentially expressed gene between deltamethrin-susceptible (DS) and deltamethrin-resistant (DR) Culex pipiens pallens and Aedes albopictus C6/36 cell line through microarray and 2D-Gel. An open reading frame of PRPS1 cloned from C. pipiens pallens has 1,011 bp and encodes for a 336 amino acids protein which shares high homology with Culex quinquefasciatus. Real-time polymerase chain reaction was used to determine the transcript expression level of PRPS1 in DS and DR strains. The expression levels of PRPS1 were higher in DR laboratory strains and natural population JXZ-DR, JXZ-LDR. PRPS1 was also detected and expressed at all developmental stages of C. pipiens pallens and increased expression level in DR3 strain than DS strain in the third and fourth instar larvae, female and male stages. In addition, to further investigate the role of PRPS1 in deltamethrin resistance, PRPS1 was transiently expressed in A. albopictus C6/36 cells and detected by western blotting. Cells transfected with PRPS1 had an increased resistance to deltamethrin compared with control cells. These results suggested that the increased expression level of PRPS1 may play roles in the regulation of deltamethrin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barlow SM, Sullivan FM et al (2001) Risk assessment of the use of deltamethrin on bednets for the prevention of malaria. Food Chem Toxicol 39(5):407–422

    Article  PubMed  CAS  Google Scholar 

  • Burton MJ, Mellor IR et al (2011) Differential resistance of insect sodium channels with kdr mutations to deltamethrin, permethrin and DDT. Insect Biochem Mol Biol 41(9):723–732

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhong D et al (2010) Molecular ecology of pyrethroid knockdown resistance in Culex pipiens pallens mosquitoes. PLoS One 5(7):e11681

    Article  PubMed  Google Scholar 

  • Foster SP, Gorman K et al (2010) English field samples of Thrips tabaci show strong and ubiquitous resistance to deltamethrin. Pest Manag Sci 66(8):861–864

    PubMed  CAS  Google Scholar 

  • Gong MQ, Gu Y et al (2005) Cloning and overexpression of CYP6F1, a cytochrome P450 gene, from deltamethrin-resistant Culex pipiens pallens. Acta Biochim Biophys Sin (Shanghai) 37(5):317–326

    Article  CAS  Google Scholar 

  • Hammon WM, Rees DM et al (1949) Experimental transmission of Japanese B encephalitis virus by Culex tritaeniorhynchus and Culex pipiens var. pallens, suspected natural vectors. Am J Hyg 50(1):46–50

    PubMed  CAS  Google Scholar 

  • Hemingway J, Field L et al (2002) An overview of insecticide resistance. Science 298(5591):96–97

    Article  PubMed  CAS  Google Scholar 

  • Hemingway J, Hawkes NJ et al (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34(7):653–665

    Article  PubMed  CAS  Google Scholar 

  • Jinfu W (1999) Resistance to deltamethrin in Culex pipiens pallens (Diptera: Culicidae) from Zhejiang, China. J Med Entomol 36(3):389–393

    PubMed  CAS  Google Scholar 

  • Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292

    Article  PubMed  CAS  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 25, 402–408

  • Matambo TS, Abdalla H et al (2007) Insecticide resistance in the malarial mosquito Anopheles arabiensis and association with the kdr mutation. Med Vet Entomol 21(1):97–102

    Article  PubMed  CAS  Google Scholar 

  • Mattingly PF (1962) Some considerations relating to the role of Culex pipiens fatigans Wiedemann in the transmission of human filariasis. Bull World Health Organ 27:569–578

    PubMed  CAS  Google Scholar 

  • Montella IR, Martins AJ et al (2007) Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg 77(3):467–477

    PubMed  Google Scholar 

  • Omori N (1958) Experimental studies on the role on the house mosquito, Culex pipiens pallens in the transmission of bancroftian filariasis. III. Duration of life of filariae in mosquitoes exposed to winter temperatures. Yokohama Med Bull 9(6):382–390

    PubMed  CAS  Google Scholar 

  • Pasteur N, Raymond M (1996) Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations. J Hered 87(6):444–449

    Article  PubMed  CAS  Google Scholar 

  • Pedra JH, McIntyre LM et al (2004) Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc Natl Acad Sci U S A 101(18):7034–7039

    Article  PubMed  CAS  Google Scholar 

  • Roessler BJ, Bell G et al (1990) Cloning of two distinct copies of human phosphoribosylpyrophosphate synthetase cDNA. Nucleic Acids Res 18(1):193

    Article  PubMed  CAS  Google Scholar 

  • Soderlund DM, Knipple DC (2003) The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33(6):563–577

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Sun L et al (2011) Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens. Parasitol Res 109(6):1689–1697

    Article  PubMed  Google Scholar 

  • Sun L, Qian J et al (2007) Continuous, mixed, and alternating exposure to deltamethrin and fenthion affect development of resistance in Culex pipiens pallens in China. J Am Mosq Control Assoc 23(3):330–334

    Article  PubMed  CAS  Google Scholar 

  • Vais H, Williamson MS et al (2001) The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag Sci 57(10):877–888

    Article  PubMed  CAS  Google Scholar 

  • Vontas J, Blass C et al (2005) Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 14(5):509–521

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Zhou D et al (2008) Expression and characterization of two pesticide resistance-associated serine protease genes (NYD-tr and NYD-ch) from Culex pipiens pallens for metabolism of deltamethrin. Parasitol Res 103(3):507–516

    Article  PubMed  Google Scholar 

  • Yoon KS, Kwon DH et al (2008) Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae). J Med Entomol 45(6):1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Yang M et al (2011) prag01, a novel deltamethrin-resistance-associated gene from Culex pipiens pallens. Parasitol Res 108(2):417–423

    Article  PubMed  Google Scholar 

  • Zhang Z, Yang C (1996) Application of deltamethrin-impregnated bednets for mosquito and malaria control in Yunnan, China. Southeast Asian J Trop Med Public Health 27(2):367–371

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health of USA (NIH; Grant No. 2R01AI075746-05), the National Natural Science Foundation of China (Grant No. 30901244, 30972564, 81171900, and 81101279), the National S & T Major Program (Grant No. 2012ZX10004-219 and 2008ZX10004-010), the National S & T Major Program (Grant No. 2012ZX10004-220 and 2008ZX10004-011), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20113234120007), Natural Science Foundation of Jiangsu Province (Grant No.81101279), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Shen or Changliang Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Zhou, D., Chen, C. et al. Ribose-phosphate pyrophosphokinase 1 (PRPS1) associated with deltamethrin resistance in Culex pipiens pallens . Parasitol Res 112, 847–854 (2013). https://doi.org/10.1007/s00436-012-3205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3205-2

Keywords

Navigation