Skip to main content

Advertisement

Log in

Eco-friendly approach using marine actinobacteria and its compounds to control ticks and mosquitoes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Ticks and mosquitoes are ectoparasitic arthropods that can transmit a variety of diseases to humans and animals during blood feeding and causing serious infectious disorders. The purpose of the present study was to assess the acaricidal and insecticidal property of ethyl acetate extract and its compounds isolated from marine actinobacteria, Streptomyces VITSTK7 sp. against the larvae of cattle ticks, Haemaphysalis bispinosa and Rhipicephalus (Boophilus) microplus (Acari: Ixodidae); fourth-instar larvae of malaria vector, Anopheles subpictus; and filarial vector, Culex quinquefasciatus (Diptera: Culicidae). The ethyl acetate extract was loaded on silica gel column and separated with chloroform, methanol, and acetone as the solvents system. The separation of fractions was visualized by the thin layer chromatography (TLC) plate, further confirmed by high-performance liquid chromatography, and followed by gas liquid chromatography. Three major fractions were analyzed in mass spectroscopy (MS) and matched with existing compounds in the data base. Based on the fragment pattern, it led to the major compounds which were predicted as cyclopentanepropanoic acid, 3,5-bis(acetyloxy)-2-[3-(methoxyimino)octyl], methyl ester (13.3 %) 1; 5-azidomethyl-3-(2-ethoxy carbonyl-ethyl)-4-ethoxycarbonylmethyl-1H-pyrrole-2-carboxylic acid, ethyl ester (18.2 %) 2; and akuammilan-16-carboxylic acid, 17-(acetyloxy)-10-methoxy, methyl ester (16R) (53.3 %) 3. The maximum efficacy was observed in compounds 1, 2, and 3, and the ethyl acetate extract of Streptomyces VITSTK7 sp. against the larvae of H. bispinosa (LC50 = 1,573.36, 1,333.09, 1,073.29, and 409.71 ppm; r 2 = 0.0.990, 0.934, 0.935, and 0.908), R. microplus (LC50 = 1,877.86, 815.83, 1,631.14, and 441.54 ppm; r 2 = 0.981, 0.926, 0.0970, and 0.915), A. subpictus (LC50 = 273.89, 687.69, 464.75, and 223.83 ppm; r 2 = 0.758, 0.924, 0.841, and 0.902), and C. quinquefasciatus (LC50 = 430.06, 881.59, 777.0, and 195.70 ppm; r 2 = 0.839, 0.859, 0.870, and 0.882), respectively. Results of the present study provide evidence that the maximum parasitic activity of ethyl acetate extract and a synergistic effect of combinations of different compounds have been suggested. The control (distilled water) showed nil mortality in the concurrent assay. In the present study, a novel, targeted, simple, and eco-friendly approach has been suggested to control blood-feeding parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99(4):466–472

    Article  PubMed  Google Scholar 

  • Antonio GE, Sánchez D, Williams T, Marina CF (2009) Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Manag Sci 65(3):323–326

    Article  PubMed  CAS  Google Scholar 

  • Arruda W, Lübeck I, Schrank A, Vainstein MH (2005) Morphological alterations of Metarhizium anisopliae during penetration of Boophilus microplus ticks. Exp Appl Acarol 37:231–244

    Article  PubMed  Google Scholar 

  • Augustine SK, Bhavsar SP, Kapadnis BP (2005) A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23. J Biosci 30(2):201–211

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt VREP, Souza EJ, Peralva SLFS, Mascarenhas AG, Alves SB (1997) In vitro efficacy evaluation of two isolates of the fungi Beauveria bassiana (Bals.) Vuill. in Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae) engorged females. Rev Bras Parasitol Vet 6:49–52

    Google Scholar 

  • Davey RB, Ahrens EH, George JE, Hunter JE, Jeannin P (1998) Therapeutic and persistent efficacy of fipronil against Boophilus microplus (Acari: Ixodidae) on cattle. Vet Parasitol 74:261–276

    Article  PubMed  CAS  Google Scholar 

  • Deepika TL, Kannabiran K, GopieshKhanna V, Rajakumar G, Jayaseelan C, Santhoshkumar T, Rahuman AA (2011) Isolation and characterization of acaricidal and larvicidal novel compound (2S, 5R, 6R)-2-hydroxy-3,5, 6-trimethyloctan-4-one from Streptomyces sp. against blood-sucking parasites. Parasitol Res. doi:10.1007/s00436-011-2493-2

  • Dhingra N, Jha P, Sharma VP, Cohen AA, Jotkar RM, Rodriguez PS, Bassani DG, Suraweera W, Laxminarayan R, Peto R (2010) Adult and child malaria mortality in India: a nationally representative mortality survey. Lancet 376(9754):1768–1774

    Article  PubMed  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GE, St J (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Path 49:573–583

    Article  Google Scholar 

  • Esteves E, Fogaça AC, Maldonado R, Silva FD, Manso PP, Pelajo-Machado M, Valle D, Daffre S (2009) Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev Comp Immunol 33(8):913–919

    Article  PubMed  CAS  Google Scholar 

  • FAO (2004) Ticks: acaricide resistance: diagnosis management and prevention in: guidelines resistance management and integrated parasite control in ruminants. FAO Animal Production and Health Division, Rome

    Google Scholar 

  • Fernandes FF, Freitas EPS, Costa AC, Silva IG (2005) Larvicidal potential of Sapindus saponaria to control the cattle tick Boophilus microplus. Pesqui Agropecu Bras 40:1243–1245

    Article  Google Scholar 

  • Fernandes FF, Freitas EPS (2007) Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 147:150–154

    Article  Google Scholar 

  • Fernández-Ruvalcaba M, Peña-Chora G, Romo-Martínez A, Hernández-Velázquez V, de la Parra AB, De La Rosa DP (2010) Evaluation of Bacillus thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus, resistant to chemical pesticides. J Insect Sci 10:186–192

    Article  PubMed  Google Scholar 

  • Geetha I, Manonmani AM, Prabakaran G (2011) Bacillus amyloliquefaciens: a mosquitocidal bacterium from mangrove forests of Andaman & Nicobar islands, India. Acta Trop 120(3):155–159

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Bansal GC, Gupta SC, Ray D, Khan MQ, Irshad H, Shahiduzzaman M, Seitzer U, Ahmed JS (2007) Status of tick distribution in Bangladesh, India and Pakistan. Parasitol Res 101(2):S207–S216

    Article  PubMed  Google Scholar 

  • González A, Díaz R, Díaz M, Borrero Y, Bruzón RY, Carreras B, Gato R (2011) Characterization of Bacillus thuringiensis soil isolates from Cuba, with insecticidal activity against mosquitoes. Rev Biol Trop 59(3):1007–1016

    PubMed  Google Scholar 

  • Gupta R, Saxena RK, Chaturvedi P, Virdi JS (1995) Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J App Bact 78:378–383

    Article  CAS  Google Scholar 

  • Homewood K, Trench P, Randal LS, Lynen G, Bishop B (2006) Livestock health and socio-economic impacts of veterinary interventions in Masailand: infection and treatment vaccine against East Coast fever. Agric Syst 89:248–271

    Article  Google Scholar 

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycetes diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  PubMed  Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Karthik L, Gaurav K, Bhaskara Rao KV, Rajakumar G, Rahuman AA (2011) Larvicidal, epellent and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus. Parasitol Res 108:1447–1455

    Article  PubMed  CAS  Google Scholar 

  • Kirkland BH, Westwood GS, Keyhani NO (2004) Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J Medl Entomol 41(4):705–711

    Article  Google Scholar 

  • Kivaria FM (2006) Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop Anim Health Prod 38(4):291–299

    Article  PubMed  CAS  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2011a) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus, against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2469-2

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011b) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 109(5):1251–7

    Article  PubMed  Google Scholar 

  • Kuester E (1964) Selection of media for isolation of Streptomycetes. Nature 202:928–929

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Leemon DM, Jonsson NN (2012) Comparison of bioassay responses to the potential fungal biopesticide Metarhizium anisopliae in Rhipicephalus(Boophilus) microplus and Lucilia cuprina. Vet Parasitol 185(2–4):236–247

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95(5):363–365

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Schumacher B, Jatzlau A, Abdel-Ghaffar F, Al-Rasheid KA, Bhushan C (2012) The effects of flumethrin (Bayticol® pour-on) on European ticks exposed to treated hairs of cattle and sheep. Parasitol Res 110(6):2181–2186

    Article  PubMed  Google Scholar 

  • Mehlhorn H, Schumacher B, Jatzlau A, Abdel-Ghaffar F, Al-Rasheid KA, Klimpel S, Pohle H (2011) Efficacy of deltamethrin (Butox® 7.5 pour on) against nymphs and adults of ticks (Ixodes ricinus, Rhipicephalus sanguineus) in treated hair of cattle and sheep. Parasitol Res 108(4):963–971

    Article  PubMed  Google Scholar 

  • Mittal PK (2003) Biolarvicides in vector control: challenges and prospects. J Vector Borne Dis 40(1–2):20–32

    PubMed  CAS  Google Scholar 

  • Nair MG, Putnam AR, Mishra SK, Mulks MH, Taft WH, Keller JE, Miller JR, Zhu PP, Meinhart JD, Lynn DG (1989) Faeriefungin: a new broad-spectrum antibiotic from Streptomyces griseus var. autotrophicus. J Nat Prod 52(4):797–809

    Article  PubMed  CAS  Google Scholar 

  • Niitsuma M, Hashida J, Iwatsuki M, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Matsumoto A, Takahashi Y, Yamada H, Otoguro K, Shiomi K, Omura S (2010) Sinefungin VA and dehydrosinefungin V, new antitrypanosomal antibiotics produced by Streptomyces sp. K05-0178. J Antibiotics 63(11):673–9

    Article  CAS  Google Scholar 

  • NIMR (2007) NVBDCP. In-depth review on malaria for national vector borne disease control programme. National Institute of Malaria Research and National Vector Borne Disease Control Programme, New Delhi

  • Nonomura H (1974) Key for classification and identification of 458 species of the streptomycetes included in ISP. J Ferment Technol 52:78–92

    Google Scholar 

  • Panicker KN, Bai MG, Rao USB, Viswam K, Suryanarayanamurthy U (1981) An. subpictus vector of malaria in coastal villages of South-East India. Curr Sci 50:694–695

    Google Scholar 

  • ParshithKakuda TR, Shobha KS, Onkarappa R (2010) Potent insecticidal activity of two Streptomyces species isolated from the soils of the western ghats of Agumbe, Karnataka. J Nat Pharm 1(1):30–32

    Article  Google Scholar 

  • Paião JCV, Monteiro AC, Kronka SN (2001) Susceptibility of the cattle tick Boophilus microplus (Acari: Ixodidae) to isolates of the fungus Beauveria bassiana. World J Microbiol Biotechnol 17:245–251

    Article  Google Scholar 

  • Prabhu K, Murugan K, Nareshkumar A, Bragadeeswaran S (2011) Larvicidal and pupicidal activity of spinosad against the malarial vector Anopheles stephensi. Asian Pac J Trop Med 4(8):610–613

    Article  PubMed  CAS  Google Scholar 

  • Priyanka SJN, Prakash S (2001) Chrysosporium tropicum efficacy against Anopheles stephensi larvae in the laboratory. J Am Mosq Control Assoc 17:127–130

    PubMed  CAS  Google Scholar 

  • Prudhomme J, McDaniel E, Ponts N, Bertani S, FenicalW JP, Roch L (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3:e2335

    Article  PubMed  Google Scholar 

  • Qian-Cutrone J, Ueki T, Huang S, Mookhtiar KA, Ezekiel R, Kalinowski SS, Brown KS, Golik J, Lowe S, Pirnik DM, Hugill R, Veitch JA, Klohr SE, Whitney JL, Manly SP (1999) Glucolipsin A and B, two new glucokinase activators produced by Streptomyces purpurogeniscleroticus and Nocardia vaccinii. J Antibiot (Tokyo) 52(3):245–55

    Article  CAS  Google Scholar 

  • Rabah FL, Sifour M, Sakr M, Hacene H (2008) A new actinomycete strain SK 4–6 producing secondary metabolites effective against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 24:2235–2241

    Article  Google Scholar 

  • Raghavendra K, Barik TK, Bhatt RM, Srivastava HC, Sreehari U, Dash AP (2011) Evaluation of the pyrrole insecticide chlorfenapyr for the control of Culex quinquefasciatus Say. Acta Trop 118(1):50–5

    Article  PubMed  CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar G, Rahuman AA (2012) Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus. Res Vet Sci 93:303–309

    Article  PubMed  CAS  Google Scholar 

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. CABIOS 8:209–213

    PubMed  CAS  Google Scholar 

  • Sampieri BR, Arnosti A, Nunes PH, Furquim KC, Chierice GO, Mathias MI (2012) Ultrastructural changes in the ovary cells of engorged Rhipicephalus sanguineus female ticks treated with esters of ricinoleic acid from castor oil (Ricinus communis). Microsc Res Tech 75(5):683–690

    Article  PubMed  CAS  Google Scholar 

  • Saurav K, Rajakumar G, Kannabiran K, Rahuman AA, Velayutham K, Elango G, Kamaraj C, Zahir AA (2011) Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against R. microplus, Anopheles stephensi, and Culex tritaeniorhynchus. Parasitol Res. doi:10.1007/s00436-011-2682-z

  • Semmler M, Abdel-Ghaffar F, Al-Rasheid KA, Mehlhorn H (2011) Comparison of the tick repellent efficacy of chemical and biological products originating from Europe and the USA. Parasitol Res 108(4):899–904

    Article  PubMed  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  PubMed  CAS  Google Scholar 

  • Snyder DE, Meyer J, Zimmermann AG, Qiao M, Gissendanner SJ, Cruthers LR, Slone RL, Young DR (2007) Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Vet Parasitol Res 150(4):345–351

    Article  CAS  Google Scholar 

  • Sonenshine DE (1991) Biology of ticks, vol. 1. Oxford University Press, New York, p 447

    Google Scholar 

  • Sundararaj R, Rao DR (1993) Field evaluation of a microgel droplet formulation of Bacillus sphaericus 1593M (Biocide-S) against Anopheles culicifacies and Anopheles subpictus in south India. Southeast Asian J Trop Med Public Health 24(2):363–368

    PubMed  CAS  Google Scholar 

  • Thenmozhi M, Kannabiran K (2010) Studies on isolation, classification and phylogenetic characterization of novel antifungal Streptomyces sp. VITSTK7 in India. Cur Res J Bio Sci 2(5):306–312

    Google Scholar 

  • Thenmozhi M, Kannabiran K (2011) Anti-Aspergillus activity of Streptomyces sp.VITSTK7 isolated from Bay of Bengal coast of Puducherry, India. J Nat Env Sci 2(2):1–8

    Google Scholar 

  • Tsuchiya K, Kobayashi S, Harada T, Kurokawa T, Nakagawa T, Shimada N, Kobayashi K (1995) Gualamycin, a novel acaricide produced by Streptomyces sp. NK11687. I. Taxonomy, production, isolation, and preliminary characterization. J Antibiot (Tokyo) 48(7):626–629

    Article  CAS  Google Scholar 

  • Van den Broek AH, Huntley JF, Halliwell RE, Machell J, Taylor M, Miller HR (2003) Cutaneous hypersensitivity reactions to Psoroptesovis and Der p 1 in sheep previously infested with P. ovis-the sheep scab mite. Vet Immunol Immunopathol 91:105–117

    Article  PubMed  Google Scholar 

  • Vijayan V, Balaraman K (1991) Metabolites of fungi and actinomycetes active against mosquito larvae. Indian J Med Res 93:115–117

    PubMed  CAS  Google Scholar 

  • Wang XJ, Wang M, Wang JD, Jiang L, Wang JJ, Xiang WS (2010) Isolation and identification of novel macrocyclic lactones from Streptomyces avermitilis NEAU1069 with acaricidal and nematocidal activity. J Agric Food Chem 58(5):2710–2714

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Zhang J, Liu CX, Gong DL, Zhang H, Wang JD, Yan YJ, Xiang WS (2011) A novel macrocyclic lactone with insecticidal bioactivity from Streptomyces microflavus neau3. Bioorg Med Chem Lett 21(18):5145–8

    Article  PubMed  CAS  Google Scholar 

  • Wenli L, Jianhua J, Scott RR, Osada H, Shen B (2008) Characterization of the tautomycin biosynthetic gene cluster from Streptomyces spiroverticillatus unveiling new insights into dialkylmaleic anhydride and polyketide biosynthesis. J Biol Chem 283:28607–28617

    Article  Google Scholar 

  • WHO (1996) Report of the WHO Informal Consultation on the Evaluation on the Testing of Insecticides. CTD/WHO PES/IC/96.1. WHO, Geneva, p 69

    Google Scholar 

  • WHO (2008) World malaria report 2008. World Health Organization, Geneva

    Google Scholar 

  • WHO (2009) World malaria report 2009. World Health Organization, Geneva

    Google Scholar 

  • Zahir AA, Rahuman AA (2012) Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet Parasitol 187(3–4):511–20

    Article  PubMed  CAS  Google Scholar 

  • Zhioua E, Heyer H, Browning M, Ginsberg HS, LeBrun RA (1999) Pathogenicity of Bacillus thurigiensis variety Kurstaki to Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 36(6):90–902

    Google Scholar 

  • Zizka Z, Weiser J, Blumauerova M, Jizba J (1989) Ultrastructural effects of macroterrolides of Streptomyces griseus LKS-1 in tissues of Culex pipiens larvae—monactin, dinactin, triactin and nonactin preparation; insecticide activity. Cytobios 58:85–91

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the management of VIT University for providing the necessary facilities to carry out our work. The authors are grateful to the management of C. Abdul Hakeem College, The Principal and Head of Zoology Department for their help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishnan Kannabiran or Abdul Abdul Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thenmozhi, M., Gopal, J.V., Kannabiran, K. et al. Eco-friendly approach using marine actinobacteria and its compounds to control ticks and mosquitoes. Parasitol Res 112, 719–729 (2013). https://doi.org/10.1007/s00436-012-3192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3192-3

Keywords

Navigation