Parasitology Research

, Volume 112, Issue 2, pp 567–576 | Cite as

Effects of Enteromyxum leei (Myxozoa) infection on gilthead sea bream (Sparus aurata) (Teleostei) intestinal mucus: glycoprotein profile and bacterial adhesion

  • Itziar EstensoroEmail author
  • Verena Jung-Schroers
  • Pilar Álvarez-Pellitero
  • Dieter Steinhagen
  • Ariadna Sitjà-Bobadilla
Original Paper


The intestinal myxosporean parasite Enteromyxum leei causes severe desquamative enteritis in gilthead sea bream (Sparus aurata) (Teleostei) that impairs nutrient absorption causing anorexia and cachexia. In fish, as in terrestrial vertebrates, intestinal goblet cells are responsible for the adherent mucus secretion overlying epithelial cells, which constitutes a first line of innate immune defense against offending microorganisms but serves also as substrate and nutrient source for the commensal microflora. The secreted intestinal mucus of parasitized (n = 6) and unexposed (n = 8) gilthead sea bream was isolated, concentrated, and subjected to downward gel chromatography. Carbohydrate and protein contents (via PAS and Bradford stainings), terminal glycosylation (via lectin ELISA), and Aeromonas hydrophila and Vibrio alginolyticus adhesion were analyzed for the isolated intestinal mucins. Parasitized fish, compared with unexposed fish, presented intestinal mucus mucins with a lower glycoprotein content and glycosylation degree at the anterior and middle intestine, whereas both glycoprotein content and glycosylation degree increased at the posterior intestine section, though only significantly for the total carbohydrate content. Additionally, a slight molecular size increase was detected in the mucin glycoproteins of parasitized fish. Terminal glycosylation of the mucus glycoproteins in parasitized fish pointed to an immature mucin secretion (N-acetyl-α-d-galactosamine increase, α-l-fucose, and neuraminic-acid-α-2-6-galactose reduction). Bacterial adhesion to large-sized mucus glycoproteins (>2,000 kDa) of parasitized fish was significantly lower than in unexposed fish.


Bacterial Adhesion Mucus Secretion Posterior Intestine Mucin Glycoprotein Mucus Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the Spanish Ministry of Science and Innovation (MICINN) through the project AGL2009-13282-C02-01. Additional funding was obtained from the Generalitat Valenciana (research grants PROMETEO 2010/006, ISIC 2012/003). IE received a Spanish PhD fellowship (FPI) from MICINN and performed the analyses during an internship in the Tierärztliche Hochschule Hannover.

Competing interests

Authors declare no conflict of interest.


  1. Álvarez-Pellitero P (2011) Mucosal intestinal immunity and response to parasite infections in ectothermic vertebrates. Immunology and immune system disorders. Nova Science Publishers, Inc, New YorkGoogle Scholar
  2. Álvarez-Pellitero P, Palenzuela O, Sitjà-Bobadilla A (2008) Histopathology and cellular response in Enteromyxum leei (Myxozoa) infections of Diplodus puntazzo (Teleostei). Parasitol Int 57:110–120PubMedCrossRefGoogle Scholar
  3. Ascencio F, Martínez-Arias W, Romero MJ, Wadstrom T (1998) Analysis of the interaction of Aeromonas caviae, A. hydrophila and A. sobria with mucins. FEMS Immunol Med Microbiol 20:219–229. doi: 10.1111/j.1574-695X.1998.tb01130.x PubMedCrossRefGoogle Scholar
  4. Balebona MC, Moriñigo MA, Faris A, Krovacek K, Mansson I, Bordas MA, Borrego JJ (1995) Influence of salinity and Ph on the adhesion of pathogenic Vibrio strains to Sparus aurata skin mucus. Aquaculture 132:113–120CrossRefGoogle Scholar
  5. Bansil R, Turner BS (2006) Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci 11:164–170. doi: 10.1016/j.cocis.2005.11.001 CrossRefGoogle Scholar
  6. Bergstrom KSB, Guttman JA, Rumi M, Ma CX, Bouzari S, Khan MA, Gibson DL, Vogl AW, Vallance BA (2008) Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen. Infect Immun 76:796–811PubMedCrossRefGoogle Scholar
  7. Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma CX, Montero M, Sham HP, Ryz N, Huang TN, Velcich A, Finlay BB, Chadee K, Vallance BA (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6. doi: 10.1371/journal.ppat.1000902
  8. Bordas MA, Balebona MC, Chabrillon M, Rodriguez-Maroto JM, Morinigo MA (2003) Influence of temperature and salinity on the adhesion to mucous surfaces of gilt-head seabream (Sparus aurata L.) of pathogenic strains of Vibrio alginolyticus and Listonella anguillarum. Bull Eur Assoc Fish Pathol 23:273–280Google Scholar
  9. Carrasson M, Grau A, Dopazo LR, Crespo S (2006) A histological, histochemical and ultrastructural study of the digestive tract of Dentex dentex (Pisces, Sparidae). Histol Histopathol 21:579–593PubMedGoogle Scholar
  10. Cheng YF, Li MY, Wang SR, Peng HJ, Reid S, Ni NT, Fang H, Xu WF, Wang BH (2010) Carbohydrate biomarkers for future disease detection and treatment. Sci China Chem 53:3–20CrossRefGoogle Scholar
  11. Cuadrado M (2009) Enteromixosi produïda per Enteromyxum leei (Diamant, Lom i Dyková, 1994) en espàrids d’interès comercial del Mediterrani. Ph. D. Thesis, Universitat Autònoma de Barcelona, BarcelonaGoogle Scholar
  12. Dezfuli BS, Pironi F, Campisi M, Shinn AP, Giari L (2010) The response of intestinal mucous cells to the presence of enteric helminths: their distribution, histochemistry and fine structure. J Fish Dis 33:481–488. doi: 10.1111/j.1365-2761.2010.01146.x PubMedCrossRefGoogle Scholar
  13. Diamant A (1997) Fish-to-fish transmission of a marine myxosporean. Dis Aquat Org 30(2):99–105CrossRefGoogle Scholar
  14. Domeneghini C, Straini RP, Veggetti A (1998) Gut glycoconjugates in Sparus aurata L. (Pisces, Teleostei). A comparative histochemical study in larval and adult ages. Histol Histopathol 13:359–372PubMedGoogle Scholar
  15. Enss ML, Schmidtwittig U, Heim HK, Sewing KF (1995) Prostaglandin E(2) alters terminal glycosylation of high-molecular-weight glycoproteins released by pig gastric mucous cells in-vitro. Prostag Leukot Ess Fat Acids 52:333–340CrossRefGoogle Scholar
  16. Estensoro I, Bermúdez R, Losada AP, Quiroga MI, Álvarez-Pellitero P, Sitjà-Bobadilla A (2009) Effect of Enteromyxum leei (Myxozoa) on gastrointestinal neuromodulators and cell apoptosis of gilthead sea bream (Sparus aurata). In: Book of abstracts of the 14th European Association of Fish Pathologists International Conference, Prague, Czech Republic, p 264Google Scholar
  17. Estensoro I, Redondo MJ, Álvarez-Pellitero P, Sitjà-Bobadilla A (2010) Novel horizontal transmission route for Enteromyxum leei (Myxozoa) by anal intubation of gilthead sea bream Sparus aurata. Dis Aquat Org 92:51–58PubMedCrossRefGoogle Scholar
  18. Estensoro I, Benedito-Palos L, Palenzuela O, Kaushik S, Sitjà-Bobadilla A, Pérez-Sánchez J (2011) The nutritional background of the host alters the disease course in a fish-myxosporean system. Vet Parasitol 175:141–150. doi: 10.1016/j.vetpar.2010.09.015 PubMedCrossRefGoogle Scholar
  19. Estensoro I, Redondo MJ, Salesa B, Kaushik S, Pérez-Sánchez J, Sitjà-Bobadilla A (2012a) Effect of the nutritional background and the infection by the parasite Enteromyxum leei (Myxozoa: Myxosporea) on the mucosal carbohydrate pattern of the intestine of gilthead sea bream (Sparus aurata). Dis Aquat Org. doi: 10.3354/dao02486
  20. Estensoro I, Calduch-Giner JA, Kaushik S, Pérez-Sánchez J, Sitjà-Bobadilla A (2012b) Modulation of the IgM gene expression and the IgM immunoreactive cell distribution by the nutritional background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei (Myxozoa). Fish Shellfish Immunol 33:401–410. doi: 10.1016/j.fsi.2012.05.029 PubMedCrossRefGoogle Scholar
  21. Fleurance R, Sauvegrain C, Marques A, Le Breton A, Guereaud C, Cherel Y, Wyers M (2008) Histopathological changes caused by Enteromyxum leei infection in farmed sea bream Sparus aurata. Dis Aquat Org 79:219–228PubMedCrossRefGoogle Scholar
  22. Hicks SJ, Theodoropoulos G, Carrington SD, Corfield AP (2000) The role of mucins in host–parasite interactions. Part I—protozoan parasites. Parasitol Today 16(11):476–481PubMedCrossRefGoogle Scholar
  23. Huang ZH, Ma AJ, Wang XA (2011) The immune response of turbot, Scophthalmus maximus (L.), skin to high water temperature. J Fish Dis 34:619–627PubMedCrossRefGoogle Scholar
  24. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330PubMedCrossRefGoogle Scholar
  25. Leknes IL (2010) Histochemical study on the intestine goblet cells in cichlid and poecilid species (Teleostei). Tissue Cell 42:61–64. doi: 10.1016/j.tice.2009.09.001 PubMedCrossRefGoogle Scholar
  26. Lodemel JB, Mayhew TM, Myklebust R, Olsen RE, Espelid S, Ringo E (2001) Effect of three dietary oils on disease susceptibility in Arctic charr (Salvelinus alpinus L.) during cohabitant challenge with Aeromonas salmonicida ssp salmonicida. Aquac Res 32:935–945. doi: 10.1046/j.1365-2109.2001.00621.x CrossRefGoogle Scholar
  27. Losada AP, Bermúdez R, Faílde LD, Quiroga MI (2012) Quantitative and qualitative evaluation of iNOS expression in turbot (Psetta maxima) infected with Enteromyxum scophthalmi. Fish Shellfish Immunol 32:243–248. doi: 10.1016/j.fsi.2011.11.007 PubMedCrossRefGoogle Scholar
  28. Magnadottir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151. doi: 10.1016/j.fsi.2004.09.006 PubMedCrossRefGoogle Scholar
  29. Neuhaus H, van der Marel M, Caspari N, Meyer W, Enss M-L, Steinhagen D (2007a) Biochemical and histochemical effects of perorally applied endotoxin on intestinal mucin glycoproteins of the common carp Cyprinus carpio. Dis Aquat Org 77:17–27. doi: 10.3354/dao01836 PubMedCrossRefGoogle Scholar
  30. Neuhaus H, van der Marel M, Caspari N, Meyer W, Enss ML, Steinhagen D (2007b) Biochemical and histochemical study on the intestinal mucosa of the common carp Cyprinus carpio L., with special consideration of mucin glycoproteins. J Fish Biol 70:1523–1534CrossRefGoogle Scholar
  31. Palenzuela O (2006) Myxozoan infections in Mediterranean mariculture. Parassitologia 48(1–2):27–29PubMedGoogle Scholar
  32. Pedini V, Scocco P, Gargiulo AM, Ceccarelli P, Lorvik S (2002) Glycoconjugate characterization in the intestine of Umbrina cirrosa by means of lectin histochemistry. J Fish Biol 61:1363–1372. doi: 10.1111/j.1095-8649.2002.tb02482.x CrossRefGoogle Scholar
  33. Redondo MJ, Álvarez-Pellitero P (2009) Lectin histochemical detection of terminal carbohydrate residues in the enteric myxozoan Enteromyxum leei parasitizing gilthead seabream Sparus aurata (Pisces: Teleostei): a study using light and transmission electron microscopy. Folia Parasitol 56:259–267PubMedGoogle Scholar
  34. Redondo MJ, Álvarez-Pellitero P (2010) Carbohydrate patterns in the digestive tract of Sparus aurata L. and Psetta maxima (L.) (Teleostei) parasitized by Enteromyxum leei and E. scophthalmi (Myxozoa). Parasitol Int 59:445–453PubMedCrossRefGoogle Scholar
  35. Rigos G, Katharios P (2010) Pathological obstacles of newly-introduced fish species in Mediterranean mariculture: a review. Rev Fish Biol Fisher 20:47–70CrossRefGoogle Scholar
  36. Roberts SD, Powell MD (2005) The viscosity and glycoprotein biochemistry of salmonid mucus varies with species, salinity and the presence of amoebic gill disease. J Comp Physiol B-Biochem Syst Environ Physiol 175:1–11. doi: 10.1007/s00360-004-0453-1 Google Scholar
  37. Rodríguez I, Novoa B, Figueras A (2008) Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish Shellfish Immunol 25:239–249. doi: 10.1016/j.fsi.2008.05.002 PubMedCrossRefGoogle Scholar
  38. Roussel P, Delmotte P (2004) The diversity of epithelial secreted mucins. Curr Org Chem 8:413–437. doi: 10.2174/1385272043485846 CrossRefGoogle Scholar
  39. Sahoo PK, Das Mahapatra K, Saha JN, Barat A, Sahoo M, Mohanty BR, Gjerde B, Odegard J, Rye M, Salte R (2008) Family association between immune parameters and resistance to Aeromonas hydrophila infection in the Indian major carp, Labeo rohita. Fish Shellfish Immunol 25:163–169. doi: 10.1016/j.fsi.2008.04.003 PubMedCrossRefGoogle Scholar
  40. Sarasquete C, Gisbert E, Ribeiro L, Vieira L, Dinis MT (2001) Glyconjugates in epidermal, branchial and digestive mucous cells and gastric glands of gilthead sea bream, Sparus aurata, Senegal sole, Solea senegalensis and Siberian sturgeon, Acipenser baeri development. Eur J Histochem 45:267–278PubMedGoogle Scholar
  41. Schroers V, Van der Marel M, Steinhagen D (2008) Influence of carp intestinal mucus molecular size and glycosylation on bacterial adhesion. Dis Aquat Org 81:135–142. doi: 10.3354/dao01947 PubMedCrossRefGoogle Scholar
  42. Schroers V, Van der Marel M, Neuhaus H, Steinhagen D (2009) Changes of intestinal mucus glycoproteins after peroral application of Aeromonas hydrophila to common carp (Cyprinus carpio). Aquaculture 288:184–189CrossRefGoogle Scholar
  43. Sitjà-Bobadilla A, Palenzuela O (2012) Enteromyxum species. In: Woo PTK, Buchmann K (eds) Fish parasites: pathology and protection. CAB International, Oxfordshire, pp 163–176CrossRefGoogle Scholar
  44. Sitjà-Bobadilla A, Diamant A, Palenzuela O, Álvarez-Pellitero P (2007) Effect of host factors and experimental conditions on the horizontal transmission of Enteromyxum leei (Myxozoa) to gilthead sea bream, Sparus aurata L., and European sea bass, Dicentrarchus labrax (L.). J Fish Dis 30:243–250PubMedCrossRefGoogle Scholar
  45. Sitjà-Bobadilla A, Calduch-Giner J, Saera-Vila A, Palenzuela O, Álvarez-Pellitero P, Pérez-Sánchez J (2008) Chronic exposure to the parasite Enteromyxum leei (Myxozoa: Myxosporea) modulates the immune response and the expression of growth, redox and immune relevant genes in gilthead sea bream, Sparus aurata L. Fish Shellfish Immunol 24:610–619PubMedCrossRefGoogle Scholar
  46. Theodoropoulos G, Hicks SJ, Corfield AP, Miller BG, Carrington SD (2001) The role of mucins in host–parasite interactions: part II—helminth parasites. Trends Parasitol 17:130–135PubMedCrossRefGoogle Scholar
  47. Torrecillas S, Makol A, Caballero MJ, Montero D, Gines R, Sweetman J, Izquierdo M (2011) Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquac Nutr 17:223–233. doi: 10.1111/j.1365-2095.2009.00730.x CrossRefGoogle Scholar
  48. Tse SK, Chadee K (1991) The interaction between intestinal mucus glycoproteins and enetric infections. Parasitol Today 7:163–172. doi: 10.1016/0169-4758(91)90121-4 PubMedCrossRefGoogle Scholar
  49. Van der Marel M, Schroers V, Neuhaus H, Steinhagen D (2008) Chemotaxis towards, adhesion to, and growth in carp gut mucus of two Aeromonas hydrophila strains with different pathogenicity for common carp, Cyprinus carpio L. J Fish Dis 31:321–330PubMedCrossRefGoogle Scholar
  50. Van der Marel M, Caspari N, Neuhaus H, Meyer W, Enss ML, Steinhagen D (2010) Changes in skin mucus of common carp, Cyprinus carpio L., after exposure to water with a high bacterial load. J Fish Dis 33:431–439PubMedCrossRefGoogle Scholar
  51. Vesterlund S, Paltta J, Karp M, Ouwehand AC (2005) Adhesion of bacteria to resected human colonic tissue: quantitative analysis of bacterial adhesion and viability. Res Microbiol 156:238–244. doi: 10.1016/j.resmic.2004.08.012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Itziar Estensoro
    • 1
    Email author
  • Verena Jung-Schroers
    • 2
  • Pilar Álvarez-Pellitero
    • 1
  • Dieter Steinhagen
    • 2
  • Ariadna Sitjà-Bobadilla
    • 1
  1. 1.Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC)Ribera de CabanesSpain
  2. 2.Zentrum für Infektionsmedizin, Fachgebiet Fischkrankheiten und FischhaltungTierärztliche Hochschule HannoverHannoverGermany

Personalised recommendations