Advertisement

Parasitology Research

, Volume 111, Issue 5, pp 1901–1906 | Cite as

Spectroscopic evaluation of thymol dissolved by different methods and influence on acaricidal activity against larvae of Rhipicephalus microplus (Acari: Ixodidae)

  • Erik Daemon
  • Caio Márcio Oliveira MonteiroEmail author
  • Ralph Maturano
  • Tatiane Oliveira Souza Senra
  • Fernanda Calmon
  • Aline Faza
  • Márcia Cristina de Azevedo Prata
  • Stéfanos Leite Georgopoulos
  • Luiz Fernando Cappa de Oliveira
Original Paper

Abstract

The acaricidal activity of three thymol formulations was investigated at five concentrations (1.25, 2.5, 5.0, 7.5, and 10.0 mg/ml) on Rhipicephalus microplus larvae, and the behavior of its solubility in these formulations was analyzed. The thymol was dissolved in distilled water plus 1 % dimethylsulfoxide as adjuvant under two heating regimes (water bath in formulation 1 and hot plate in formulation 2) as well as without heating in 50 % ethanol and 50 % water (v/v). The acaricidal activity was assessed by the modified larval packet test, and the solubilization behavior was investigated by ultraviolet–visible spectroscopy, based on the Beer–Lambert law. With formulations 1 and 2, the mortality was greater than 95 % starting at the thymol concentrations of 5.0 and 7.5 mg/ml, respectively, while with formulation 3, this mortality level was reached starting at a concentration of 2.5 mg/ml, showing that the addition of ethanol in the solution enhanced the acaricidal action of thymol. This result was supported by the LC 90 values, which were 3.3, 2.4, and 1.6 mg/ml of thymol for formulations 1, 2, and 3, respectively. This result is related to the better solubility of thymol in the hydroethanolic formulation, since the spectroscopic analysis revealed that the thymol dissolved more completely in this formulation. This fact was evident once the R 2 obtained from the linear regression analysis of the relation absorbance × concentration of the formulations 1, 2, and 3 approached the optimal value (R 2 = 1) in the following sequence: 1, 2, and 3 (0.717, 0.901, and 0.968, respectively).

Keywords

Thymol Tick Population Solubility Behavior Acaricidal Activity Solubilization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the National Council for Scientific and Technological Research (CNPq) and the Minas Gerais State Research Foundation (FAPEMIG) for the funding.

References

  1. Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472PubMedCrossRefGoogle Scholar
  2. Apel MA, Ribeiro VLS, Bordignon SAL, Henrique AT, Von Poser G (2009) Chemical composition and toxicity of the essential oils from Cunila species (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus. Parasitol Res 105:863–868PubMedCrossRefGoogle Scholar
  3. Chagas ACS, Barros LD, Cotinguiba S, Furlan M, Giglioto R, Oliveira MCS, Bizzo HS (2012) In vitro efficacy of plant extracts and synthesized substances on Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 110(1):295–303CrossRefGoogle Scholar
  4. Daemon E, Monteiro CMO, Rosa LS, Clemente MA, Arcoverde A (2009) Evaluation of the acaricide activity of thymol on engorged and unengorged larvae of Rhipicephalus sanguineus (Latreille,1808) (Acari: Ixodidae). Parasitol Res 105:495–497PubMedCrossRefGoogle Scholar
  5. Daemon E, Maturano R, Monteiro CMO, Scoralik MG, Massoni T (2012) Acaricidal activity of hydroethanolic formulations of thymol against Rhipicephalus sanguineus (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae. Vet Parasitol 186:542–545PubMedCrossRefGoogle Scholar
  6. Farmacopéia Portuguesa VIII (2005) INFARMED—Ministério da Saúde, LisbonGoogle Scholar
  7. Fernandes ÉKK, Angelo IC, Rangel DEN, Bahiense TC, Moraes ÁML, Roberts DW, Bittencourt VREP (2011) An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Vet Parasitol 182:307–318PubMedCrossRefGoogle Scholar
  8. Ferrarini SR, Duarte MO, Rosa RG, Rolim V, Lima VLE, Poser G, Ribeiro VLS (2008) Acaricidal activity of limonene, limonene oxide and beta-amino alcohol derivatives on Rhipicephalus (Boophilus) microplus. Vet Parasitol 157:149–153PubMedCrossRefGoogle Scholar
  9. Ferreira P, Soares GLG, D'Avila S, Bessa ECD (2009) The influence of caffeine and thymol on the survival, growth and reproduction of Subulina octona (Bruguiere, 1789) (Mollusca, Subulinidae). Braz Arch Biol Technol 52(4):945–952CrossRefGoogle Scholar
  10. Finney DS (1971) Probit analysis, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  11. Furlong J, Martins JRS, Prata MCA (2007) O carrapato dos bovinos e a resistência: temos o que comemorar? Controle estratégico do carrapato dos bovinos. A Hora Vet 27:53–56Google Scholar
  12. Hu D, Coats J (2008) Evaluation of the environmental fate of thymol and phenethyl propionate in the laboratory. Pest Manag Sci 64:775–779PubMedCrossRefGoogle Scholar
  13. Martinez-Velazquez M et al (2011) Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 108(2):481–487PubMedCrossRefGoogle Scholar
  14. Mendes AS, Daemon E, Monteiro CMO, Maturano R, Brito FC, Massoni T (2011a) Acaricidal activity of thymol on larvae and nymphs of Amblyomma cajennense (Acari: Ixodidae). Vet Parasitol 183:136–139CrossRefGoogle Scholar
  15. Mendes MC, Lima CKP, Nogueira AHC, Yoshinara E, Chiebao DP, Gabriel FHL, Ueno TEH, Namidone A, Klafke GM (2011b) Resistance to cypermethrin, deltamethrin and chlorpyriphos in populations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from small farms of the State of São Paulo, Brazil. Vet Parasitol 178:383–388PubMedCrossRefGoogle Scholar
  16. Monteiro CMO, Daemon E, Clemente MA, Rosa LS, Maturano R (2009) Acaricidal efficacy of thymol on engorged nymphs and females of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Parasitol Res 105:1093–1097CrossRefGoogle Scholar
  17. Monteiro CMO, Daemon E, Silva AMR, Maturano R, Amaral C (2010) Acaricide and ovicide activities of thymol on engorged females and eggs of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 106:615–619CrossRefGoogle Scholar
  18. Monteiro CMO, Maturano R, Daemon E, Catunda-Junior FEA, Calmon F, Senra TOS, Faza A, Carvalho MG (2012) Acaricidal activity of eugenol on Rhipicephalus microplus (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae. Parasitol Res. doi: 10.1007/s00436-012-2964-0
  19. Novelino MAS, Daemon E, Soares GLG (2007) Avaliação da atividade repelente do timol, mentol, salicilato de metila e ácido salicílico sobre larvas de Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae). Arq Bras Med Vet Zootec 59(3):700–704CrossRefGoogle Scholar
  20. Pandey S, Upadhyay S, Tripathi A (2009) Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res 105(2):507–512PubMedCrossRefGoogle Scholar
  21. Pereira MC (2008) Introdução. In: Pereira MC, Labruna MB, Szabo MPJ, Klafke GM (eds) Rhipicephalus (Boophilus) microplus: Biologia, Controle e Resistência. MEDVET, São Paulo, pp 1–5Google Scholar
  22. Perinotto WMS, Ângelo IC, Golo PS, Quinelato S, Camargo MG, Sá FA, Bittencourt VREP (2012) Susceptibility of different populations of ticks to entomopathogenic fungi. Exp Parasitol 130:257–260PubMedCrossRefGoogle Scholar
  23. Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102:867–873PubMedCrossRefGoogle Scholar
  24. Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29(9):913–920CrossRefGoogle Scholar
  25. Ribeiro VLS, Rolim V, Bordignon S, Henriques AT, Dorneles G, Limberg R, Poser GLV (2008) Chemical composition and larvicidal properties of the essential oils from Drimys brasiliensis Miers (Winteraceae) on the cattle tick Rhipicephalus (Boophilus) microplus and the brown dog tick Rhipicephalus sanguineus. Parasitol Res 102:531–535PubMedCrossRefGoogle Scholar
  26. Scoralik MG, Daemon E, Monteiro CMO, Maturano R (2012) Enhancing the acaricide effect of thymol on larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae) by solubilization in ethanol. Parasitol Res 110:645–648PubMedCrossRefGoogle Scholar
  27. Skoog DA, Holler FJ, Crouch SR (2006) Principles of instrumental analysis, 6th edn.Google Scholar
  28. Stone BF, Haydock KP (1962) A method for measuring the acaricide susceptibility of the cattle B. microplus (Can.). Bull Entomol Res 53:563–578CrossRefGoogle Scholar
  29. Vale A (2003) Ethanol. Medicine 31(10):49–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Erik Daemon
    • 1
  • Caio Márcio Oliveira Monteiro
    • 2
    Email author
  • Ralph Maturano
    • 2
  • Tatiane Oliveira Souza Senra
    • 1
  • Fernanda Calmon
    • 1
  • Aline Faza
    • 1
  • Márcia Cristina de Azevedo Prata
    • 4
  • Stéfanos Leite Georgopoulos
    • 3
  • Luiz Fernando Cappa de Oliveira
    • 3
  1. 1.Programa de Pós-graduação em Comportamento e Biologia AnimalUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Programa de Pós-graduação em Ciências VeterináriasUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  3. 3.Departamento de QuímicaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  4. 4.Embrapa Gado de LeiteJuiz de ForaBrazil

Personalised recommendations