Parasitology Research

, Volume 111, Issue 4, pp 1661–1671 | Cite as

The effects of a parasitic copepod on the recent larval growth of a fish inhabiting rocky coasts

  • Pamela Palacios-Fuentes
  • Mauricio F. Landaeta
  • Gabriela Muñoz
  • Guido Plaza
  • F. Patricio Ojeda
Original Paper


Parasites can infect larval, juvenile or adult marine fishes; however, the effects of parasites on the growth and condition of fish larvae have seldom been investigated. This study analysed the effects of a parasitic copepod on the larval growth of the Chilean triplefin Helcogrammoides chilensis (Tripterygiidae) based on the microstructure of the sagittal otoliths. Fish larvae were collected during the austral spring of 2010 off central Chile. Their body length ranged from 5.1 to 16.6 mm (2 to 57 days old). They were parasitised by a penellid larval copepod that was always externally attached to the ventral side of the fish’s gut. The prevalence of the copepod ranged from 2.7 % to 20.8 %, with one to four parasites per fish larva. Relationships between otolith size (radius, perimeter) and larval size were equal for parasitised and unparasitised fish larvae (P > 0.05). Larval growth was also similar for unparasitised (0.21 mm/day) and parasitised fish larvae (0.19 mm/day) (P > 0.05). However, a comparison of same-aged larvae showed that the larvae with copepods were smaller in both length and estimated body volume than the larvae without copepods. The Recent Otolith Growth Index, indicated that larval H. chilensis with copepods showed a reduction in recent growth and condition compared with those without evidence of copepods (P < 0.05). Nevertheless, a higher parasite load (two vs. one pennellids) did not decrease the condition of the larval fish. The infestation of pennellids on coastal fish larvae may therefore induce an increase in the pelagic larval duration and potentially affect the settlement rates of this intertidal fish.



The authors thank J. Contreras, C. Cortez, F. Salas-Berrios and R. Finke for their field work aboard RV Ilan, and we thank M. Palacios and C. Fuentes for their constant support. We also thank R. Castro (Universidad de Antofagasta) for his help with the identification of the ectoparasite and S. Goyen for her assistance with the revision of the English manuscript. This research was funded by Fondecyt 1100424 awarded to FPO, GP and MFL. The drawings were made by C. Cortez.


  1. Aguilera B, Catalán IA, Palomera I, Olivar MP (2009) Otolith growth of European seabass (Dicentrarchus labrax L.) larvae fed with constant or varying food levels. Sci Mar 73:173–182. doi:10.3989/scimar.2009.73n1173 Google Scholar
  2. Antonelli L, Quilichini Y, Marchand B (2012) Lernanthropus kroyeri (Vab Beneden and Hesse 1851) parasitic Copepoda (Siphonostomatoidae, Lernanthropidae) of European cultured sea bass Dicentrarchus labrax (Linnaeus 1758) from Corsica: ecological and morphological study. Parasitol Res 110:1959–1968. doi:10.1007/s00436-011-2724-6 PubMedCrossRefGoogle Scholar
  3. Berrios V, Vargas M (2004) Estructura trófica de la asociación de peces intermareales de la costa rocosa del norte de Chile. Rev Biol Trop 52(1):201–212PubMedGoogle Scholar
  4. Boyle KS, Horn MH (2006) Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile. Mar Ecol Prog Ser 319:65–84. doi:10.3354/meps319065 CrossRefGoogle Scholar
  5. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583PubMedCrossRefGoogle Scholar
  6. Cancino C, Farías K, Lampas S, González B, Cuevas V (2010) Descripción de los complejos estructurales óseos en Helcogrammoides chilensis (Blennioidei: Tripterygiidae) de la zona central de Chile. Rev Biol Mar 45(1):671–682. doi:10.4067/S0718-19572010000400011 Google Scholar
  7. Coustau C, Renaud F, Delay B, Robbins I, Mathieu M (1991) Mechanisms involved in parasitic castration: in vitro effects of the trematode Prosorhynchus squamatus on the gametogenesis and the nutrient storage metabolism of the marine bivalve mollusc Mytilus edulis. Exp Parasitol 73(1):36–43. doi:10.1016/0014-4894(91)90005-H PubMedCrossRefGoogle Scholar
  8. Castro R, Baeza H (1986) Premetamorphosis stages of two Pennellids (Copepoda, Siphonostomatoida) from their definitive hosts. Crustaceana 50(2):166–175CrossRefGoogle Scholar
  9. Castro R, Baeza H (1989) Characters for the pennellid taxonomy based on Peniculus, Metapeniculus, Lernaeenicus and Lernaeocera specimens revision with SEM. Estud Oceanol 8:21–45Google Scholar
  10. De Buen F (1960) Los peje-sapos (Familia Gobiesocidae) en Chile. Rev Biol Mar 10(1–3):69–82Google Scholar
  11. Dower JF, Pepin P, Kim G-C (2009) Covariation in feeding success, size-at-age and growth in larval radiated shanny (Ulvaria subbifurcata): insights based on individuals. J Plankton Res 31:235–247. doi:10.1093/plankt/fbn118 CrossRefGoogle Scholar
  12. Felley SM, Vecchione M, Hare SGF (1987) Incidence of ectoparasitic copepods on ichthyoplankton. Copeia 1987:778–782CrossRefGoogle Scholar
  13. Fogelman RM, Grutter AS (2008) Mancae of the parasitic cymothoid isopod, Anilocra apogonae: early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes. Coral Reefs 27:685–693. doi:10.1007/s00338-008-0379-2 CrossRefGoogle Scholar
  14. Fogelman RM, Kuris AM, Grutter AS (2009) Parasitic castration of a vertebrate: effect of the cymothoid isopod, Anilocra apogonae, on the five-lined cardinalfish, Cheilodipterus quinquelineatus. Int J Parasitol 39:577–583. doi:10.1016/j.ijpara.2008.10.013 PubMedCrossRefGoogle Scholar
  15. Folkvord A, Rukan K, Johannessen A, Moksness E (1997) Early life history of herring larvae in contrasting feeding environments determined by otolith microstructure analysis. J Fish Biol 51(suppl A):250–263. doi:10.1111/j.1095-8649.1997.tb06102.x CrossRefGoogle Scholar
  16. García-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals vs. the analysis of covariance. J Anim Ecol 70:708–711CrossRefGoogle Scholar
  17. Grutter AS, Pickering JL, McCallum H, McCormick MI (2008) Impact of micropredatory gnathiid isopods on young coral reef fishes. Coral Reefs 27:655–661. doi:10.1007/s00338-008-0377-4 CrossRefGoogle Scholar
  18. Grutter AS, Cribb TH, McCallum H, Pickering JL, McCormick MI (2010a) Effects of parasites on larval and juvenile stages of the coral reef fish Pomacentrus moluccensis. Coral Reefs 29:31–40. doi:10.1007/s00338-009-0561-1 CrossRefGoogle Scholar
  19. Grutter AS, Crean AJ, Curtis LM, Kuris AM, Warner RR, McCormick MI (2010b) Indirect effects of an ectoparasite reduce successful establishment of a damselfish at settlement. Funct Ecol 25(3):586–594. doi:10.1111/j.1365-2435.2010.01798.x CrossRefGoogle Scholar
  20. Heath M, Nicoll N (1991) Infection of larval herring by helminth parasites in the North Sea and the effect on feeding incidence. Cont Shelf Res 11:1477–1489. doi:10.1016/0278-4343(91)90022-X CrossRefGoogle Scholar
  21. Hernández-Miranda E, Palma AT, Ojeda FP (2003) Larval fish assemblages in nearshore coastal waters off central Chile: temporal and spatial patterns. Estuar Coast Shelf Sci 56:1075–1092. doi:10.1016/S0272-7714(2)00308-6 CrossRefGoogle Scholar
  22. Herrera G (1990) Incidence of larval anchovy, Engraulis ringens, parasitized by caligid developmental stages. Bull Mar Sci 47:571–575Google Scholar
  23. Ho J-S (2000) The major problem of cage aquaculture in Asia relating to sea lice. Proceedings of the First International Symposium on cage Aquaculture in Asia, pp. 13–19Google Scholar
  24. Hovenkamp F, Witte JIJ (1991) Growth, otolith growth and RNA/DNA ratios of larval plaice Pleuronectes platessa in the North Sea 1987 and 1989. Mar Ecol Prog Ser 70:105–116. doi:10.3354/meps070105 CrossRefGoogle Scholar
  25. Jones CM, Grutter AS (2008) Reef-based micropredators reduce the growth of post-settlement damselfish in captivity. Coral Reefs 27:677–684. doi:10.1007/s00338-008-0383-6 CrossRefGoogle Scholar
  26. Kohn Y, Clements K (2011) Pelagic larval duration and population connectivity in New Zealand triplefin fishes (Tripterygiidae). Environ Biol Fish 91(3):275–286. doi:10.1007/s10641-011-9777-3 CrossRefGoogle Scholar
  27. Landaeta MF, Castro LR (2006) Larval distribution and growth of the rockfish, Sebastes capensis (Sebastidae, Pisces), in the fjords of southern Chile. ICES J Mar Sci 63:714–724. doi:10.1016/j.icesjms.2006.01.002 CrossRefGoogle Scholar
  28. Landaeta MF, Veas R, Letelier J, Castro LR (2008) Larval fish assemblages off central Chile upwelling ecosystem. Rev Biol Mar Oceanogr 43:569–584. doi:10.4067/s0718-19572008000300016 CrossRefGoogle Scholar
  29. Landaeta MF, López G, Suárez-Donoso N, Bustos CA, Balbontín F (2011) Larval fish distribution, growth and feeding in Patagonian fjords: potential effects of freshwater discharge. Environ Biol Fish 93:73–87. doi:10.1007/s10641-011-9891-2 Google Scholar
  30. Loot G, Poulet N, Reyjol Y, Blanchet S, Lek S (2004) The effects of the ectoparasite Tracheliastes polycolpus (Copepoda: Lernaeopodidae) on the fins of rostrum dace (Leuciscus leuciscus burdigalensis). Parasitol Res 94:16–23. doi:10.1007/s00436-004-1166-9 PubMedCrossRefGoogle Scholar
  31. Mikheev VN, Pasternak AF, Valtonen ET (2004) Turning host specificity during the ontogeny of a fish ectoparasite: behavioural responses to host-induced cues. Parasitol Res 92:220–224. doi:10.1007/s00436-003-1044-x PubMedCrossRefGoogle Scholar
  32. Mladineo I (2003) Life cycle of Ceratothoa oestroides, a cymothoid isopod parasite from sea bass Dicentrarchus labrax and sea bream Sparus aurata. Dis Aquat Org 57:97–101PubMedCrossRefGoogle Scholar
  33. Muñoz AA, Ojeda FP (1998) Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114:563–573. doi:10.1007/s004420050481 CrossRefGoogle Scholar
  34. Muñoz G, Delorme N (2011) Variaciones temporalis de las comunidadesd de parásitos en peces intermareales de Chile central: hospedadores residentes vs temporales. Rev Biol Mar Oceanogr 46(3):313–327CrossRefGoogle Scholar
  35. Muñoz G, Randhawa HS (2011) Monthly variation in the parasite communities of the intertidal fish Scartichthys viridis (Blenniidae) from central Chile: are there seasonal patterns? Parasitol Res 109:53–62. doi:10.1007/s00436-10-220-4 PubMedCrossRefGoogle Scholar
  36. Neilson JD, Perry RI, Scott JS, Valerio P (1987) Interactions of caligid ectoparasites and juvenile gadids on Georges Bank. Mar Ecol Prog Ser 39:221–232CrossRefGoogle Scholar
  37. Oozeki Y, Watanabe Y (2000) Comparison of somatic growth and otolith increment growth in laboratory-reared larvae of Pacific saury, Cololabis saira, under different temperature conditions. Mar Biol 136:349–359. doi:10.1007/s002270050693 CrossRefGoogle Scholar
  38. Paperno R, Targett TE, Grecay PA (1997) Daily growth increments in otoliths of juvenile weakfish, Cynoscion regalis: experimental assessment of changes in increment width with changes in feeding rate, growth rate, and condition factor. Fish Bull 95:521–529Google Scholar
  39. Pequeño G (1989) Peces de Chile. Lista sistemática revisada y comentada. Rev Biol Mar 24(2):1–132Google Scholar
  40. Pérez R (1979) Postembrionic development of Tripterygion chilensis Cancino, 1955, in Valparaíso bay (Tripterygiidae: Perciformes). Rev Biol Mar 16:319–329Google Scholar
  41. Pino-Marambio J, Mordue AJ, Birkett M, Carvajal J, Asencio G, Mellado A, Quiroz A (2007) Behavioural studies of host, non-host and mate location by the sea louse, Caligus rogercresseyi Boxshall & Bravo, 2000 (Copepoda: Caligidae). Aquacult 271:70–76CrossRefGoogle Scholar
  42. Rico A, Peralta R, López-Gappa J (2010) Recruitment variation in subtidal macrofouling assemblages of a Patagonic harbour (Argentina, south-western Atlantic). J Mar Biol Assoc UK 90:437–443. doi:10.1017/s0025315409990920 CrossRefGoogle Scholar
  43. Rigby MC, Dufour V (1996) Parasites of coral reef fish recruits, Epinephelus merra (Serranidae), in French Polynesia. J Parasitol 82:405–408PubMedCrossRefGoogle Scholar
  44. Rojas JM, Ojeda FP (2010) Spatial distribution of intertidal fishes: a pattern dependent on body size and predation risk? Environ Biol Fish 87:175–185. doi:10.1007/s10641-010-9578-0 CrossRefGoogle Scholar
  45. Smitt FA (1898) Poissons de L`expedition scientifique a la Terre du Feu. K. Svenska Vet. Akad. Handlingar 24(5):1–80Google Scholar
  46. Tomo AP (1981) Contribucion al conocimiento de la fauna ictiológica del sector antártico Argentino. Dir Nac Inst Antart Argent 14:1–242Google Scholar
  47. Uribe C, Folch H, Enríquez R, Morán G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56(10):486–503Google Scholar
  48. Williams JT, Springer VG (2001) Review of the South American-Antarctic triplefin fish genus Helcogrammoides (Perciformes Tripterygiidae). Rev Biol Trop 49(suppl 1):117–123Google Scholar
  49. Yuniar AT, Palm HW, Walter T (2007) Crustacean fish parasites from Segara Anakan Lagoon, Java, Indonesia. Parasitol Res 100:1193–1204PubMedCrossRefGoogle Scholar
  50. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey, p 663Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Pamela Palacios-Fuentes
    • 1
  • Mauricio F. Landaeta
    • 1
  • Gabriela Muñoz
    • 2
  • Guido Plaza
    • 3
  • F. Patricio Ojeda
    • 4
  1. 1.Laboratorio de Ictioplancton (LABITI), Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de ValparaísoViña del MarChile
  2. 2.Laboratorio de Parasitología, Facultad de Ciencias del Mar y de Recursos NaturalesUniversidad de ValparaísoViña del MarChile
  3. 3.Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
  4. 4.Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations