Skip to main content
Log in

Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts were tested against the third instar larvae of Culex quinquefasciatus. The plant material was shade dried at room temperature and powdered coarsely. From each plant, 500 g powder was macerated with 1.5 L of hexane, chloroform and ethyl acetate sequentially for a period of 72 h each and filtered. The yield of the S. indicus, C. collinus and M. koenigii crude extracts by hexane, chloroform and ethyl acetate was 9.16, 11.71 and 10.83 g for S. indicus; 8.17, 10.69 and 9.85 g for C. collinus; and 10.11, 11.92 and 9.87 g for M. koenigii, respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. The S. indicus, C. collinus and M. koenigii leaf extracts at 250, 500, 750 and 1,000 ppm caused a significant mortality of C. quinquefasciatus. The LC50 and LC90 values of S. indicus, C. collinus and M. koenigii against third instar larvae at 24, 48 and 72 h (hexane, chloroform and ethyl acetate) were the following: S. indicus LC50 values were 544.93, 377.86 and 274.79 ppm and LC90 values were 1,325.32, 1,572.55 and 1,081.29 ppm at 24 h; C. collinus LC50 values were 375.34, 318.29 and 226.10 ppm and LC90 values were 699.65, 1,577.62 and 1,024.92 ppm at 24 h; and M. koenigii LC50 values were 963.53, 924.85 and 857.62 ppm and LC90 values were 1,665.12, 1,624.68 and 1,564.37 ppm at 24 h, respectively. However, the highest larval mortality was observed in C. collinus followed by S. indicus and M. koenigii of various concentrations at 24, 48 and 72 h. The study proved that S. indicus, C. collinus and M. koenigii leaf extracts had larvicidal property against species of C. quinquefasciatus. This is an ideal ecofriendly approach for the control of vector control programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul Rahuman A, Venkatesan P, Gopalakrishnan G (2008) Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitol Res 103:1383–1390

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Anonymous (1962) The wealth of India: the raw materials. Vol VI, India, CSIR, pp 446-48

  • Arivoli S, Samuel T (2011) Studies on the mosquitocidal activity of Murraya koenigii (L.) Spreng (Rutaceae) leaf extracts against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Asian J Expl Biol Sci2(4): 721-730

  • Baslas KK (1959) Essential oil from Sphaeranthus indicus Perf. J Essent Oil Res 50:765

    CAS  Google Scholar 

  • Basu NK, Lamsal PP (1946) Chemical investigation of Sphaeranthus indicus Linn. J Am Pharm Asso 35:274–5

    Article  CAS  Google Scholar 

  • Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in north-eastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Bhakuni DS, Dhar MM, Dhawan BN, Mehrota BN (1969) Screening of Indian plants for biological activity. Ind J Exp Biol 7:250–253

    CAS  Google Scholar 

  • Brandis D, Singh B, Singh M, Dun D (1972) Indian trees and account of trees, shrubs and woody climbers, bamboos and palms indigenous or commonly cultivated in British Indian empire, 5th edn. Bishen Singh. Mahendrapal Singh, Dehradun, pp 113–114

    Google Scholar 

  • Chandre F, Darriet F et al (1998) Pyrethroid resitance in Culex quinquefasciatus from West Africa. Med Vet Entomol 12:359–366

    Article  PubMed  CAS  Google Scholar 

  • Chavan SR, Nickam SL (1982) Mosquito larvicidal activity of Ocimum basilium (Linn.). Ind J Med Res 75:220–222

    CAS  Google Scholar 

  • Desai ST (2002) Potency of larvicidal properties of plant extracts against mosquito larvae under laboratory conditions (M.Sc. Dissertation submitted to Mumbai University Mumbai, India)

  • Deshmukh PB, Chavan SR, Renapurkar DM (1982) A study of insecticidal activity of twenty indigenous plants. Pesticides 12:7–10

    Google Scholar 

  • Eswarappa S, Benjamin SPE (2007) Renal failure and neuromuscular weakness in Cleistanthus collinus poisoning. J Assoc Phy India 55:85–86

    CAS  Google Scholar 

  • Eswarappa S, Chakraborty AR, Palatty BU (2003) Cleistanthus collinus poisoning: case report and review of the literature. J Toxicol 41:369–372

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–78

    Google Scholar 

  • Gogate MG, Ananthasubramanian L, Nargund KS, Bhattacharyya SC (1986) Some interesting sesquiterpinoids from Sphaeranthus indicus Linn. (Compositae). Indian J Chem 25B:233–238

    Google Scholar 

  • Gogate VM (2000) Ayurvedic pharmacology and therapeutic uses of medicinal plants (Dravyaganvigyan), 1st edn. Bharatiya Vidya Bhavan, Mumbai

    Google Scholar 

  • Govindachari TR, Sathe SS, Viswanathan N (1969) Chemical constituents of Cleistanthus collinus (Rox.). Tetrahedron 25:2815–2821

    Article  CAS  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292

    Article  PubMed  CAS  Google Scholar 

  • Green MM, Singer JM et al (1981) Larvicidal activity of Tagetes minuta (marigold) towards Aedes aegypti. J Am Mosq Control Assoc 7:282–286

    Google Scholar 

  • Gupta RK, Chandra S, Mahandevan V (1967) Chemical composition of Sphaeranthus indicus Linn. Ind J Pharmocol 29:47–8

    CAS  Google Scholar 

  • Gupta NS (1984) The Ayurvedic system of medicine. Vol. II. New Delhi: Logas Press

  • Harve G, Kamath V (2004) Larvicidal activity of plant extracts used alone and in combination with known synthetic larvicidal agents against Aedes aegypti. Ind J Exp Biol 42(12):1216–1219

    Google Scholar 

  • Hiremath SM, Madalageri BB, Basarkar PW (1998) Composition of curry leaf (Murraya koenigii preng) oil during leaf growth. Indian Perfum 42:58–59

    Google Scholar 

  • Jasim Uddin Chowdhury, Md. Nazrul Islam Bhuiyan, Mohammed Yusuf (2008) Chemical composition of the leaf essential oils of Murraya koenigii (L.) Spreng and Murraya paniculata (L.) Jack. J Bangladesh Pharmacol Soc (BDPS) 3:59–63

    Google Scholar 

  • Jayaraman M, Govindaswamy S (2000) Cleistanthin A, a diphyllin glycoside from Cleistanthus collinus, is cytotoxic to PHA-stimulated (proliferating) human lymphocytes. Drug Dev Res 51:187–190

    Article  Google Scholar 

  • Kirthikar KR, Basu BD (1935) Indian medicinal plants, 2nd edn. Lalit Mohan Basu, New Delhi, pp 474–475

    Google Scholar 

  • Kirtikar KR, Basu BD (1987) Indian medicinal plants, 2nd edn. International Book Distributors, Dehradun

    Google Scholar 

  • Kovendan K, Murugan K (2011) Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv Environ Biol 5(2):335–344

    Google Scholar 

  • Kovendan K, Murugan K, Thiyagarajan P, Kumar N, Abirami D, Asaikkutti A (2009) Impact of climate change on the filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). In: International congress of global warming on biodiversity of insects: management and conservation, 9–12 February 2009. Tamil Nadu, India, p 62

    Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011a) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res 109:1251–1257

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S, Barnard DR (2011b) Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2736-2

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012a) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus, against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012b) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110:571–581

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Naresh Kumar A, Vincent S, Hwang JS (2012c) Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 110(110):669–678

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Prasanna Kumar K, Panneerselvam C, Mahesh Kumar P, Amerasan D, Subramaniam J, Vincent S (2012d) Mosquitocidal properties of Calotropis gigantea (Family: Asclepiadaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against the mosquito vectors. Parasitol Res. doi:10.1007/s00436-012-2865-2

  • Lakshmi TG, Srimannarayan G, Subba rao NV (1970) A new glucoside from Cleistanthus collinus. Curr Sci 5:17

    Google Scholar 

  • Latha C, Vijayakumar PD, Velayutham S, Joseph A (1999) Biological activity of indigenous plant extracts as mosquito larvicides. Ind J Exp Biol 37:206–208

    Google Scholar 

  • Mahesh Kumar P, Murugan K, Kovendan K, Subramaniam J, Amaresan D (2012) Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2797-2

  • Maheswaran R, Sathis S, Ignacimuthu S (2008) Larvicidal activity of Leucus aspera (Willd.) against the larvae of Culex quinquefasciatus Say. and Aedes aegypti L. Int J Int Biol 2(3):214–217

    Google Scholar 

  • Michael E, Bundy DA, Grenfell BT (1996) Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitol 112:409–428

    Article  Google Scholar 

  • National Institute of Communicable Diseases (1990) Proceedings of the national seminar on operation research on vector control in filariasis. New Delhi

  • Nisha M, Kalyanasundaram M, Paily KP, Abidha VP, Balaraman K (2007) In vitro screening of medicinal plant extracts for macrofilaricidal activity. Parasitol Res 100(3):575–579

    Article  PubMed  Google Scholar 

  • Paranjape P (2001) Indian medicinal plants. In: Forgotten healer: a guide to ayurvedic herbalmedicine. Chaukhamba Sanskrit Pratishthan, Delhi, p 148-9

  • Raina VK, Lal RK, Tripathi S, Khan M, Syamasundar KV, Srivastava SK (2002) Essential oil composition of genetically diverse stocks of Murraya koenigii from India. Flav Frag J 17:144–46

    Article  CAS  Google Scholar 

  • Ramaiah KD, Das PK, Appavoo NC, Ramu K, Augustin DJ, Kumar KN, Chandrakala AV (2000) A programme to eliminate lymphatic filariasis in Tamil Nadu state, India: compliance with annual single-dose DEC mass treatment and some related operational aspects. Trop Med Int Health 5:842–847

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Rossiter L, Ortelli F, Jensen B, Wang XL et al (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 359:295–304

    Article  PubMed  CAS  Google Scholar 

  • Rawani A, Haldar KM, Ghosh A, Chandra G (2009) Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 105:1411–1417

    Article  PubMed  Google Scholar 

  • Rehel S (2011) Sphaeranthus indicus. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. www.iucnredlist.org

  • Sarathchandra G, Balakrishnamoorthy P (1998) Acute toxicity of Cleistanthus collinus, an indigenous poisonous plant in Cavia porcellus. J Environ Biol 1:145–148

    Google Scholar 

  • Sastri BN (1952) The wealth of India, a dictionary of Indian raw material and industrial products. New Delhi, Council of Scientific and Industrial Research, pp 446–447

    Google Scholar 

  • Sharma M, Saxena RC (1996a) Sphaeranthus indicus as a mosquito larvicidae. J Applied Zool Res 7(1):87–88

    Google Scholar 

  • Sharma M, Saxena RC (1996b) Sphaeranthus indicus as a mosquito larvicidae. J Appl Zool Res 7(1):87–88

    Google Scholar 

  • Shekhani MS, Shah PM, Yasmin A, Siddiqui R, Perveen S, Khan KM (1990) An immunostimulant sesquiterpene glycoside from Sphaeranthus indicus. Phytochem 29:2573–6

    Article  CAS  Google Scholar 

  • Sukari MA, Ahmad K, Haron Md Jelas, Muse R (2001) Carbazole alkaloids from roots of Murraya Koenigii (Rutaceae). Malaysian J Analytical Sci 7:1263–265

    Google Scholar 

  • Venketachalam MR, Jebanesan A (2001) Larvicidal activity of Hydrocotyl javanica Thumb (Apiaceae) extract against Culex quinquefasciatus. Ind J Exp Zool 4(1):99–101

    Google Scholar 

  • Walde GS, Joythirmay T, Rao PGP, Shivaswamy R, Srinivas P (2005) Flavour volatiles of leaves, fruits and seed cotyledons of Murraya koenigii L. Flav Frag J 20:169–72

    Article  CAS  Google Scholar 

  • WHO (1992) Lymphatic filariasis: the disease and its control. 5th report of the WHO Expert Committee on Filariasis. Technical Report Series. p 821

  • World Conservation Monitoring Centre (1998) Cleistanthus collinus. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. www.iucnredlist.org.

  • Yadav RN, Kumar S (1998) 7-Hydroxy-3′,4'′,5,6-tetramethoxy flavone 7-O-b-D-(1-4)-diglucoside, a new flavone glycoside from the stem of Sphaeranthus indicus. J Roy Inst Chem 70:164–6

    Google Scholar 

  • Zipcodezoo (2012) “Murraya koenigii”. In: Flora of China Vol. 11 Page 86, 87. Botanical Garden, Missouri. Online at EFloras.org

Download references

Acknowledgments

We thank Dr. T. Ambrose, Professor and Head of the Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India, for the laboratory facilities provided and for his valuable suggestions and constant encouragement during the study period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Additional information

Kalimuthu Kovendan and Subramaniam Arivoli made equal contributions to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovendan, K., Arivoli, S., Maheshwaran, R. et al. Larvicidal efficacy of Sphaeranthus indicus, Cleistanthus collinus and Murraya koenigii leaf extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 111, 1025–1035 (2012). https://doi.org/10.1007/s00436-012-2927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2927-5

Keywords

Navigation