Skip to main content
Log in

Application of molecular techniques in the study of natural infection of Leishmania infantum vectors and utility of sandfly blood meal digestion for epidemiological surveys of leishmaniasis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Epidemiological studies on the distribution of leishmaniasis caused by Leishmania infantum Nicolle, 1908 (Kinetoplastida: Trypanosomatidae) have been based principally on serological surveys of the canine reservoir. This methodology is useful due to the facility of sampling, the rapidity in obtaining results, its consistency and because it allows the detection of heterogeneous foci of canine leishmaniasis (CanL) even in small areas. Other investigations have analysed Leishmania parasitism in sandflies (Diptera: Psychodidae: Phlebotominae) by using classical dissection techniques. These techniques allow the vector species to be incriminated in different foci, although they suffer from being very time consuming. Lately, studies in this field are increasingly using molecular techniques, which are faster and easier to perform. In the present work, we applied a nested-PCR in a study of natural infection of sandflies by Leishmania in three isolated farms where serological data on canine leishmaniasis of local dogs were also obtained. The analysis allowed the detection of 38.7% of females with positive nested-PCR (78%, 18% and 0%, respectively, in the different isolated farms). The positive Leishmania DNA samples were genotyped and identified as L. infantum. The results of this work provide new data for the vectorial capacity of Phlebotomus ariasi in a Pyrenean area, which can be considered at risk of becoming a new focus of CanL. The females with positive nested-PCR displayed blood in the midgut at different degrees of digestion, and/or were gravid. According to the multivariate logistic regression analysis, the risk of nested-PCR-positivity increased significantly with the degree of blood digestion (OR = 1.3; P value = 0.025). The Phlebotomus species and the presence of eggs were not statistically associated with nested-PCR positivity (P value of >0.05). The correlation of positive nested-PCR results with the presence of seropositive dogs in the farm confirms the utility of this technique in the study of the distribution and intensity of leishmaniasis foci. Also, the importance of sandfly blood-meal digestion for epidemiological surveys of leishmaniasis foci has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvar J, Cañavate C, Molina R, Moreno J, Nieto J (2004) Canine leishmaniases. Adv Parasitol 57:1–88. doi:10.1016/S0065-308X(04)57001-X

    Article  PubMed  Google Scholar 

  • Aransay AM, Scoulica E, Tselentis Y (2000) Detection and identification of leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplastic DNA. Appl Environ Microbiol 66:1933–1938. doi:0099-2240/00/$04.0010

    Article  PubMed  CAS  Google Scholar 

  • Ballart C, Alcover MM, Portús M, Gállego M (2012) Is leishmaniasis widespread in Spain? First data on canine leishmaniasis in the province of Lleida, Catalonia, northeast Spain. Trans R Soc Trop Med Hyg 106:134–136. doi:10.1016/j.trstmh.2011.11.001

    Article  PubMed  CAS  Google Scholar 

  • Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F (2008) Intraspecific variability (rDNA ITS and mtDNA Cyt b) of Phlebotomus sergenti in Spain and Morocco. Acta Trop 107:259–267. doi:10.1016/j.actatropica.2008.07.003

    Article  PubMed  Google Scholar 

  • Castillejo S (2008) Factores que influyen en la incidencia de la leishmaniosis a través de un estudio epidemiológico longitudinal en el foco de la comarca del Priorato. Ph.D. dissertation, Universitat de Barcelona, Barcelona, Spain

  • Colombo FA, Odorizzi RM, Laurenti MD, Galati EA, Canavez F, Pereira-Chioccola VL (2011) Detection of Leishmania (Leishmania) infantum RNA in fleas and ticks collected from naturally infected dogs. Parasitol Res 109:267–274. doi:10.1007/s00436-010-2247-6

    Article  PubMed  Google Scholar 

  • Dantas-Torres F, Lorusso V, Testini G, de Paiva-Cavalcanti M, Figueredo LA, Stanneck D, Mencke N, Brandão-Filho SP, Alves LC, Otranto D (2010) Detection of Leishmania infantum in Rhipicephalus sanguineus ticks from Brazil and Italy. Parasitol Res 106:857–860. doi:10.1007/s00436-010-1722-4

    Article  PubMed  Google Scholar 

  • de Almeida MC, Vilhena V, Barral A, Barral-Netto M (2003) Leishmanial infection: analysis of its first steps. A review. Mem Inst Oswaldo Cruz 98:861–870

    Article  PubMed  Google Scholar 

  • de Colmenares M, Portús M, Botet J, Dobaño C, Gállego M, Wolff M, Seguí G (1995) Identification of blood meals of Phlebotomus perniciosus (Diptera: Psychodidae) in Spain by a competitive enzyme-linked immunosorbent assay biotin/avidin method. J Med Entomol 3:229–233

    Google Scholar 

  • Dereure J, Rioux JA, Gállego M, Périères J, Pratlong F, Mahjour J, Saddiki A (1991) Leishmania tropica in Morocco: infection in dogs. Trans R SocTrop Med Hyg 85:595

    Article  CAS  Google Scholar 

  • Di Muccio T, Marinucci M, Frusteri L, Maroli M, Pesson B, Gramiccia M (2000) Phylogenetic analysis of Phlebotomus species belonging to the subgenus Larroussius (Diptera, Psychodidae) by ITS2 rDNA sequences. Insect Biochem Mol Biol 30:387–393. doi:10.1016/S0965-1748(00)00012-6

    Article  PubMed  Google Scholar 

  • Dolmatova AV, Demina NA (1971) Les Phlébotomes (Phlebotominae) et les Maladies qu’ils transmettent. Editions de l’Office de la Recherche Scientifique et Technique Outre-Mer (O.R.S.T.O.M.) Initiations-Documentations Techniques, 18, pp 167. Available from: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/Idt/05283.pdf#search=“phlebotomes_dolmatova”

  • Fisa R, Gállego M, Castillejo S, Aisa MJ, Serra T, Riera C, Carrió J, Gállego J, Portús M (1999) Epidemiology of canine leishmaniosis in Catalonia (Spain). The example of the Priorat focus. Vet Parasitol 83:87–97. doi:10.1016/S0304-4017(99)00074-6

    Article  PubMed  CAS  Google Scholar 

  • Gállego M (2004) Emerging parasitic zoonoses: leishmaniosis. Rev Sci Tech 2:661–676

    Google Scholar 

  • Gállego J, Botet J, Gállego M, Portús M (1992) Los flebotomos de la España Peninsular e islas Baleares. Identificación y corología. Comentarios sobre los métodos de captura. In: “In memoriam” al Profesor Doctor D. F. de P. Martínez Gómez. S. Hernández Rodríguez. Servicio de Publicaciones, Universidad de Córdoba, pp 581–600

  • Gradoni L (2002) The diagnosis of canine leishmaniasis. Canine leishmaniasis: moving towards a solution. In: Proceedings of the Second International Canine leishmaniasis forum, Sevilla, Spain, pp 7–14

  • Guy MW, Killick-Kendrick R, Gill GS, Rioux JA, Bray RS (1984) Ecology of leishmaniasis in the south of France. 19. Determination of the hosts of Phlebotomus ariasi Tonnoir, 1921 in the Cévennes by bloodmeal analyses. Ann Parasitol Hum Comp 59:449–458

    PubMed  CAS  Google Scholar 

  • Iniesta L, Fernández-Barredo S, Bulle B, Gómez MT, Piarroux R, Gállego M, Alunda JM, Portús M (2002) Diagnostic techniques to detect cryptic leishmaniasis in dogs. Clin Diagn Lab Immunol 9:1137–1141. doi:10.1128/CDLI.9.5.1137-1141.2002

    PubMed  CAS  Google Scholar 

  • Kato H, Uezato H, Katakura K, Calvopiña M, Marco JD, Barroso PA, Gomez EA, Mimori T, Korenaga M, Iwata H, Nonaka S, Hashiguchi Y (2005) Detection and identification of Leishmania species within naturally infected sand flies in the Andean areas of Ecuador by a polymerase chain reaction. Am J Trop Med Hyg 72:87–93

    PubMed  CAS  Google Scholar 

  • Killick-Kendrick R (1985) Some epidemiological consequences of the evolutionary fit between leishmaniae and their phlebotomine vectors. Bull Soc Pathol Exot 78:747–755

    CAS  Google Scholar 

  • Killick-Kendrick R (1999) The biology and control of phlebotomine sand flies. Clin Dermatol 17:279–289. doi:10.1016/S0738-081X(99)00046-2

    Article  PubMed  CAS  Google Scholar 

  • Killick-Kendrick R, Rioux JA (2002) Mark-release-recapture of sand flies fed on leishmanial dogs: the natural life-cycle of Leishmania infantum in Phlebotomus ariasi. Parassitologia 44:67–71

    PubMed  CAS  Google Scholar 

  • Martín-Sánchez J, Gállego M, Barón S, Castillejo S, Morillas-Márquez F (2006) Pool screen PCR for estimating the prevalence of Leishmania infantum infection in sandflies (Diptera: Nematocera, Phlebotomidae). Trans R Soc Trop Med Hyg 100:527–532. doi:10.1016/j.trstmh.2005.08.005

    Article  PubMed  Google Scholar 

  • Molina R, Amela C, Nieto J, San-Andrés M, González F, Castillo JA, Lucientes J, Alvar J (1994) Infectivity of dogs naturally infected with Leishmania infantum to colonized Phlebotomus perniciosus. Trans R Soc Trop Med Hyg 88:491–493

    Article  PubMed  CAS  Google Scholar 

  • Myskova J, Votypka J, Volf P (2008) Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol 45:133–138. doi:10.1603/0022-2585(2008)45[133:LISFCO]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Pandey K, Pant S, Kanbara H, Shuaibu MN, Mallik AK, Pandey BD, Kaneko O, Yanagi T (2008) Molecular detection of Leishmania parasites from whole bodies of sandflies collected in Nepal. Parasitol Res 103:293–297. doi:10.1007/s00436-008-0967-7

    Article  PubMed  Google Scholar 

  • Paz GF, Ribeiro MF, Michalsky EM, da Rocha Lima AC, França-Silva JC, Barata RA, Fortes-Dias CL, Dias ES (2010) Evaluation of the vectorial capacity of Rhipicephalus sanguineus (Acari: Ixodidae) in the transmission of canine visceral leishmaniasis. Parasitol Res 106:523–528. doi:10.1007/s00436-009-1697-1

    Article  PubMed  Google Scholar 

  • Perez JE, Ogusuku E, Ingá R, Lopez M, Monje J, Paz L, Nieto E, Arevalo J, Guerra H (1994) Natural Leishmania infection of Lutzomyia spp. in Peru. Trans R Soc Trop Med Hyg 88:161–164

    Article  PubMed  CAS  Google Scholar 

  • Pineda JA, Macías J, Morillas F, Fernández-Ochoa J, Cara J, de la Rosa R, Martín-Sánchez J, González M, García-Briones E, Delgado J, Lissen E (2001) False-positive results of leishmanin skin test due to phenol-containing diluent. Trans R Soc Trop Med Hyg 95:173–174

    Article  PubMed  CAS  Google Scholar 

  • Portús M, Gállego M, Riera C, Fisa R, Aisa MJ, Botet J, Carrió J, Castillejo S, Iniesta L, López P, Montoya L, Muñoz C, Serra T, Gállego J (2007) A review of human and canine leishmaniosis in Catalonia, and associated vector distribution. Rev Ibér Parasitol 67:59–67

    Google Scholar 

  • Riera C, Valladares JE, Gállego M, Aisa MJ, Castillejo S, Fisa R, Ribas N, Carrió J, Alberola J, Arboix M (1999) Serological and parasitological follow-up in dogs experimentally infected with Leishmania infantum and treated with meglumine antimoniate. Vet Parasitol 84:33–47

    Article  PubMed  CAS  Google Scholar 

  • Riera C, Fisa R, Lopez P, Ribera E, Carrió J, Falcó V, Molina I, Gállego M, Portús M (2004) Evaluation of a latex agglutination test (KAtex) for detection of Leishmania antigen in urine of patients with HIV-Leishmania coinfection: value in diagnosis and post-treatment follow-up. Eur J Clin Microbiol Infect Dis 23:899–904. doi:10.1007/s10096-004-1249-7

    PubMed  CAS  Google Scholar 

  • Rioux JA, Guilvard E, Gállego J, Moreno G, Pratlong F, Portús M, Rispail P, Gállego M, Bastien P (1986) Intervention simultanée de Phlebotomus ariasi Tonnoir, 1921 et P. perniciosus Newstead 1911 dans un même foyer. Infestations par deux zymodèmes syntopiques. A propós d’une enquête en Catalogne (Espagne). In: Leishmania: Taxonomie et Phylogenèse I.M.E.E.E., Montpellier, pp 439–444

  • Rossi E, Bongiorno G, Ciolli E, Di Muccio T, Scalone A, Gramiccia M, Gradoni L, Maroli M (2008) Seasonal phenology, host-blood feeding preferences and natural Leishmania infection of Phlebotomus perniciosus (Diptera, Psychodidae) in a high-endemic focus of canine leishmaniasis in Rome province, Italy. Acta Trop 105:158–165. doi:10.1016/j.actatropica.2007.10.005

    Article  PubMed  CAS  Google Scholar 

  • Sacks DL (2001) Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol 3:189–196. doi:10.1046/j.1462-5822.2001.00115.x

    Article  PubMed  CAS  Google Scholar 

  • Schönian G, Nasereddin A, Dinse N, Schweynoch C, Schallig HDFH, Presber W, Jaffe CL (2003) PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis 47:349–358. doi:10.1016/S0732-8893(03)00093-2

    Article  PubMed  Google Scholar 

  • Van Eys GJJM, Schoone GJ, Kroon Nel CM, Ebeling SB (1992) Sequence analysis of small ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol 51:133–142

    Article  PubMed  Google Scholar 

  • Velo E, Paparisto A, Bongiorno G, Di Muccio T, Khoury C, Bino S, Gramiccia M, Gradoni L, Maroli M (2005) Entomological and parasitological study on phlebotomine sandflies in central and northern Albania. Parasite 12:45–49

    PubMed  CAS  Google Scholar 

  • Volf P, Hostomska J, Rohousova I (2008) Molecular crosstalks in Leishmania-sandfly–host relationships. Parasite 15:237–243

    PubMed  CAS  Google Scholar 

  • World Health Organization (2010) Control of Leishmaniases. WHO Technical Report Series no. 949. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, 22–26 March 2010

Download references

Acknowledgments

Work supported by projects FIS01/0831 (Ministerio de Sanidad y Consumo, Spain), AGL2004-06909-CO2-01/GAN (Ministerio de Ciencia y Tecnología, Spain), 2009SGR385 (Department d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya, Spain), and 40076/GOCE-CT-2003-010 (6th Framework Programme, EU, Emerging Diseases in a changing European eNvironment) and catalogued by the EDEN Steering Committee as EDEN0267 (www.edenfp6project.net). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. Thanks are due to M. Maroli and G. Bongiorno for helping in blood digestion identification and to the ISS that accept M.M. Alcover for a stage in the Section of Vector-Borne Diseases and International Health. We thank the farm owners that allowed us to collect blood samples from the dogs and to capture the sandflies.

Ethical standards

The experiments of the manuscripts submitted for publication comply with the current laws of Spain and Italy.

Conflict of interest

The authors have no conflicts of interest concerning the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Gállego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcover, M.M., Gramiccia, M., Di Muccio, T. et al. Application of molecular techniques in the study of natural infection of Leishmania infantum vectors and utility of sandfly blood meal digestion for epidemiological surveys of leishmaniasis. Parasitol Res 111, 515–523 (2012). https://doi.org/10.1007/s00436-012-2863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2863-4

Keywords

Navigation