Skip to main content
Log in

Cryptosporidiosis: comparison of three diagnostic methods and effects of storage temperature on detectability of cryptosporidia in cattle faeces

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Three diagnostic methods (a modified Ziehl–Neelsen staining technique (MZN), a negative staining with carbol fuchsine (CF) and a commercial enzyme immunoassay (EIA) kit, ProSpecT® Cryptosporidium Microplate Assay (Remel, Lenexa, KS, USA)) for detection of Cryptosporidium oocysts in cattle faeces were compared regarding sensitivity and suitability under routine laboratory conditions, with particular emphasis on sample storage. In the 103 faecal samples examined, cryptosporidia infections were detected significantly more often by EIA (p < 0.05; n = 76) than by MZN (n = 65) if ten random fields were evaluated microscopically, but not if the whole coverslip was scanned. In contrast, sensitivities of EIA and CF (n = 69) did not differ significantly. Results were obtained very rapidly by CF. However, the hands-on time of CF is comparable to EIA, while MZN is more time consuming. EIA is more expensive than CF and MZN but easy to perform and to evaluate and does not need considerably experienced staff in contrast to CF and MZN. Moreover, 45 faecal samples stored for up to 27 days at different temperatures (+6°C, +16°C, +30°C, +40°C) were examined. The sensitivity of microscopic detection of oocysts in stained smears (CF, MZN) decreased in a temperature and time-dependent manner, while EIA results were not influenced by sample storage at any temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd El Kader NM, Blanco MA, Ali-Tammamm M, Abd El Ghaffar AR, Osman A, El Sheikh N, Rubio JM, de Fuentes I (2011) Detection of Cryptosporidium parvum and Cryptosporidium hominis in human patients in Cairo, Egypt. Parasitol Res. doi:10.1007/s00436-011-2465-6

  • Amato Neto V, Braz LM, Di Pietro AO, Módolo JR (1996) Oocysts of Cryptosporidium sp in feces: comparison of the modified Kinyoun and Heine methods (in Portuguese, with English abstract). Rev Soc Bras Med Trop 29:575–578

    PubMed  CAS  Google Scholar 

  • Ayinmode AB, Olakunle FB, Xiao L (2010) Molecular characterization of Cryptosporidium spp. in native calves in Nigeria. Parasitol Res 107:1019–1021

    Article  PubMed  Google Scholar 

  • Baxby D, Blundell N (1983) Sensitive, rapid, simple methods for detecting Cryptosporidium in faeces. Lancet 2:1149

    Article  PubMed  CAS  Google Scholar 

  • Bednarska M, Bajer A, Sinski E, Girouard AS, Tamang L, Graczyk TK (2007) Fluorescent in situ hybridization as a tool to retrospectively identify Cryptosporidium parvum and Giardia lamblia in samples from terrestrial mammalian wildlife. Parasitol Res 100:455–460

    Article  PubMed  Google Scholar 

  • Brook EJ, Christley RM, French NP, Hart CA (2008) Detection of Cryptosporidium oocysts in fresh and frozen cattle faeces: comparison of three methods. Lett Appl Microbiol 46:26–31

    PubMed  CAS  Google Scholar 

  • Brush CF, Walter MF, Anguish LJ, Ghiorse WC (1998) Influence of pretreatment and experimental conditions on electrophoretic mobility and hydrophobicity of Cryptosporidium parvum oocysts. Appl Environ Microbiol 64:4439–4445

    PubMed  CAS  Google Scholar 

  • Casemore DP, Armstrong M, Sands RL (1985) Laboratory diagnosis of cryptosporidiosis. J Clin Pathol 38:1337–1341

    Article  PubMed  CAS  Google Scholar 

  • Chalmers RM, Smith RP, Hadfield SJ, Elwin K, Giles M (2011a) Zoonotic linkage and variation in Cryptosporidium parvum from patients in the United Kingdom. Parasitol Res 108:1321–1325

    Google Scholar 

  • Chalmers RM, Campbell BM, Crouch N, Charlett A, Davies AP (2011b) Comparison of diagnostic sensitivity and specificity of seven Cryptosporidium assays used in the UK. J Med Microbiol 60:1598–1604

    Article  PubMed  Google Scholar 

  • Cirak VY, Bauer C (2004) Comparison of conventional coproscopical methods and commercial coproantigen ELISA kits for the detection of Giardia and Cryptosporidium infections in dogs and cats. Berl Munch Tierarztl Wochenschr 117:410–413

    PubMed  Google Scholar 

  • Clarke SC, McIntyre M (2001) Acid-fast bodies in faecal smears stained by the modified Ziehl–Neelsen technique. Br J Biomed Sci 58:7–10

    PubMed  CAS  Google Scholar 

  • Dagan R, Fraser D, El-On J, Kassis I, Deckelbaum R, Turner S (1995) Evaluation of an enzyme immunoassay for the detection of Cryptosporidium spp. in stool specimens from infants and young children in field studies. Am J Trop Med Hyg 52:134–138

    PubMed  CAS  Google Scholar 

  • Doing KM, Hamm JL, Jellison JA, Marquis JA, Kingsbury C (1999) False-positive results obtained with the Alexon ProSpecT Cryptosporidium enzyme immunoassay. J Clin Microbiol 37:1582–1583

    PubMed  CAS  Google Scholar 

  • Dyachenko V, Kuhnert Y, Schmaeschke R, Etzold M, Pantchev N, Daugschies A (2010) Occurrence and molecular characterization of Cryptosporidium spp. genotypes in European hedgehogs (Erinaceus europaeus L.) in Germany. Parasitology 137:205–216

    Article  PubMed  CAS  Google Scholar 

  • El-Moamly AA, El-Sweify MA (2011) ImmunoCard STAT! cartridge antigen detection assay compared to microplate enzyme immunoassay and modified Kinyoun’s acid-fast staining technique for detection of Cryptosporidium in fecal specimens. Parasitol Res. doi:10.1007/s00436-011-2585-z

  • Fayer R, Ungar BLP (1986) Cryptosporidium spp and cryptosporidiosis. Microbiol Rev 50:458–483

    PubMed  CAS  Google Scholar 

  • Fayer R, Trout JM, Jenkins MC (1998) Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. J Parasitol 84:1165–1169

    Article  PubMed  CAS  Google Scholar 

  • Garcia LS, Shimizu RY (1997) Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens. J Clin Microbiol 35:1526–1529

    PubMed  CAS  Google Scholar 

  • Garcia LS, Bruckner DA, Brewer TC, Shimizu RY (1983) Techniques for the recovery and identification of Cryptosporidium oocysts from stool specimens. J Clin Micorbiol 18:185–190

    CAS  Google Scholar 

  • Health Protection Agency (2007) Investigation of dermatological specimens for superficial mycoses (BSOP 39). http://www.hpa-standardmethods.org.uk/documents/bsop/pdf/bsop39.pdf

  • Heine J (1982) A simple technic for the demonstration of cryptosporidia in feces (in German). Zentralbl Veterinarmed B 29:324–327

    Article  PubMed  CAS  Google Scholar 

  • Henriksen SA, Pohlenz JFL (1981) Staining of cryptosporidia by a modified Ziehl–Neelsen technique. Acta Vet Scand 22:594–596

    PubMed  CAS  Google Scholar 

  • Hill SL, Cheney JM, Taton-Allen GF, Reif JS, Bruns C, Lappin MR (2000) Prevalence of enteric zoonotic organisms in cats. J Am Vet Med Assoc 216:687–692

    Article  PubMed  CAS  Google Scholar 

  • Homem CG, Nakamura AA, Silva DC, Teixeira WFP, Coelho WMD, Meireles MV (2011) Real-time PCR assay targeting the actin gene for the detection of Cryptosporidium parvum in calf fecal samples. Parasitol Res. doi:10.1007/s00436-011-2694-8

  • Ignatius R, Eisenblätter M, Regnath T, Mansmann U, Futh U, Hahn H, Wagner J (1997) Efficacy of different methods for detection of low Cryptosporidium parvum oocyst numbers or antigen concentrations in stool specimens. Eur J Clin Microbiol Infect Dis 16:732–736

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Uga S, Oda T, Rai SK, Vesey G, Hotta H (2006) Changes of physical and biochemical properties of Cryptosporidium oocysts with various storage conditions. Water Res 40:881–886

    Article  PubMed  CAS  Google Scholar 

  • Jenkins M, Trout JM, Higgins J, Dorsch M, Veal D, Fayer R (2003) Comparison of tests for viable and infectious Cryptosporidium parvum oocysts. Parasitol Res 89:1–5

    Article  PubMed  CAS  Google Scholar 

  • Johnston SP, Ballard MM, Beach MJ, Causer L, Wilkins PP (2003) Evaluation of three commercial assays for detection of Giardia and Cryptosporidium organisms in fecal specimens. J Clin Microbiol 41:623–626

    Article  PubMed  Google Scholar 

  • Kehl KSC, Cicirello H, Havens PL (1995) Comparison of four different methods for detection of Cryptosporidium species. J Clin Microbiol 33:416–418

    PubMed  CAS  Google Scholar 

  • Kváč M, Květoňová D, Salát J, Ditrich O (2007) Viability staining and animal infectivity of Cryptosporidium andersoni oocysts after long-term storage. Parasitol Res 100:213–217

    Article  PubMed  Google Scholar 

  • Lemos V, Graczyk TK, Alves M, Lobo ML, Sousa MC, Antunes F, Matos O (2005) Identification and determination of the viability of Giardia lamblia cysts and Cryptosporidium parvum and Cryptosporidium hominis oocysts in human fecal and water supply samples by fluorescent in situ hybridization (FISH) and monoclonal antibodies. Parasitol Res 98:48–53

    Article  PubMed  Google Scholar 

  • Marks SL, Hanson TE, Melli AC (2004) Comparison of direct immunofluorescence, modified acid-fast staining, and enzyme immunoassay techniques for detection of Cryptosporidium spp in naturally exposed kittens. J Am Vet Med Assoc 225:1549–1553

    Article  PubMed  Google Scholar 

  • Miller JR, Mojica B, Nadle J, Vugia DJ, Waterman SH, Mamer B, Hahn C, Doing KM, Hamm JL, Buker N, Beckett GA, Gensheimer KF, Kludt P, DeMaria A, Ennis J, Keithly J, Kondracki S, Ackman D, Smith P, Warshauer D, Proctor M, Davis J (1999) False-positive laboratory tests for Cryptosporidium involving an enzyme-linked immunosorbent assay—United States, November 1997-March 1998 (Reprinted from MMWR, vol 48, pp 4–8, 1999). J Am Med Assoc 281:411–412

    Google Scholar 

  • Pardo D, Oliver O (2010) Determination of the infectious agents associated with neonatal calf diarrhoea (NCD) in Colombia. Proc. 26th World Buiatrics Congress, Santiago de Chile, Chile, 14-18 November 2010. Congress proceedings:239

  • Spain CV, Scarlett JM, Wade SE, McDonough P (2001) Prevalence of enteric zoonotic agents in cats less than 1 year old in central New York State. J Vet Intern Med 15:33–38

    Article  PubMed  CAS  Google Scholar 

  • Ward LA, Wang YF (2001) Rapid methods to isolate Cryptosporidium DNA from frozen feces for PCR. Diagn Microbiol Infect Dis 41:37–42

    Article  PubMed  CAS  Google Scholar 

  • Ware MW, Schaefer FW (2005) The effects of time and temperature on flow cytometry enumerated live Cryptosporidium parvum oocysts. Lett Appl Microbiol 41:385–389

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We disclose any financial and personal relationships with other people or organizations that could inappropriately bias our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Kuhnert-Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhnert-Paul, Y., Bangoura, B., Dittmar, K. et al. Cryptosporidiosis: comparison of three diagnostic methods and effects of storage temperature on detectability of cryptosporidia in cattle faeces. Parasitol Res 111, 165–171 (2012). https://doi.org/10.1007/s00436-011-2813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2813-6

Keywords

Navigation