Skip to main content
Log in

In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Covalent modification of proteins by ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) regulates many cellular functions in eukaryotes. These modifications are likely to be associated with pathogenesis, growth, and development of many protozoan parasites but molecular details about this pathway are unavailable for most protozoa. This study presents an analysis of the Ub pathway in three members of the Entamoeba species. Using bioinformatics tools we have identified all Ub and Ubl genes along with their corresponding activating, conjugating, and ligating enzymes (E1, E2s, and E3s) in three Entamoeba species, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens. Phylogenetic trees were established for the identified E2s and RING finger E3s using maximum-likelihood method to infer the relationship among these proteins. In silico co-domain analysis of RING finger E3s implicates these proteins in a variety of functions. Several known and putative regulatory motifs were identified in the upstream regions of RING finger domain containing E3 genes. All E2 and E3 genes were analyzed in genomic context in E. histolytica and E. dispar. Most E2s and E3s were in syntenic positions in the two genomes. Association of these genes with transposable elements (TEs) was compared between E. histolytica and E. dispar. A closer association was found between RING finger E3s with TEs in E. histolytica. In summary, our analyses suggests that the complexity of the Ub pathway in Entamoeba species is close to that observed in higher eukaryotes. This study provides important data for further understanding the role of Ub pathway in the biology of these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC/C:

Anaphase promoting complex/cyclosome

CRL:

Cullin-RING ligases

HECT:

Homologous to E6-AP C-terminal

RING:

Really interesting new gene

PHD:

Plant homeo domain

TE:

Transposable element

UBC:

Ubiquitin conjugating

Ubl:

Ubiquitin-like

UPP:

Ubiquitin–proteasome pathway

References

  • Ali I, Ehrenkaufer G, Hackney J, Singh U (2007) Growth of the protozoan parasite Entamoeba histolytica in 5-azacytidine has limited effects on parasite gene expression. BMC Genomics 8:7

    Article  PubMed  Google Scholar 

  • Alpi A, Pace P, Babu M, Patel K (2008) Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol Cell 32:767–777

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Koonin E (2000) The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol 10:R132–R134

    Article  PubMed  CAS  Google Scholar 

  • Bailey T, Williams N, Misleh C, Li W (2006) MEME: Discoverng and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  PubMed  CAS  Google Scholar 

  • Bays N, Hampton R (2002) Cdc48-Ufd1-Npl4: stuck in the middle with Ub. Curr Biol 12:R366–R371

    Article  PubMed  CAS  Google Scholar 

  • Biederer T, Volkwein C, Sommer T (1997) Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806–1809

    Article  PubMed  CAS  Google Scholar 

  • Burroughs A, Jaffee M, Iyer L, Aravind L (2008) Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/ub-like protein conjugation. J Struct Biol 162:205–218

    Article  PubMed  CAS  Google Scholar 

  • Capili A, Schultz D, RauscherIII F, Borden K (2001) Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J 20:165–177

    Article  PubMed  CAS  Google Scholar 

  • Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131:309–323

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Schwartz A (2004) The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim Biophys Acta 1695:3–17

    Article  PubMed  CAS  Google Scholar 

  • Citarelli M, Teotia S, Lamb R (2010) Evolutionary history of the poly (ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 10:308

    Article  PubMed  Google Scholar 

  • Coscoy L, Sanchez D, Ganem D (2001) A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol 155:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Denuc A, Marfany G (2010) SUMO and ubiquitin paths converge. Biochem Soc Trans 38:34–39

    Article  PubMed  CAS  Google Scholar 

  • Doerig C (2004) Protein kinases as targets for anti-parasitic chemotherapy. Biochim Biophys Acta 1697:155–168

    PubMed  CAS  Google Scholar 

  • Ehrenkaufer G, Haque R, Hackney J, Eichinger D, Singh U (2007) Identification of developmentally regulated genes in Entamoeba histolytica: insights into mechanisms of stage conversion in a protozoa parasite. Cell Microbiol 9:1426–1444

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber B, Chumak N, Eisenhaber F, Hauser M (2007) The ring between ring fingers (RBR) protein family. Genome Biol 8:209–219

    Article  PubMed  Google Scholar 

  • Furukawa K, Mizushima N, Noda T, Ohsumi Y (2000) A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem 275:7462–7465

    Article  PubMed  CAS  Google Scholar 

  • Geng J, Klionsky D (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9:859–864

    Article  PubMed  CAS  Google Scholar 

  • Gómez C, Pérez D, López-Bayghen E, Orozco E (1998) Transcriptional analysis of the EhPgp1 promoter of Entamoeba histolytica multidrug-resistant mutant. J Biol Chem 273:7277–7284

    Article  PubMed  Google Scholar 

  • Gonzalez J, Bai G, Frevert U, Corey E, Eichinger D (1999) Proteasome-dependent cyst formation and stage-specific ubiquitin mRNA accumulation in Entamoeba invadens. Eur J Biochem 264:897–904

    Article  PubMed  CAS  Google Scholar 

  • Goodman C, McFadden G (2007) Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr Drug Targets 8:15–30

    Article  PubMed  CAS  Google Scholar 

  • Hackney J, Ehrenkaufer G, Singh U (2007) Identification of putative transcriptional regulatory networks in Entamoeba histolytica using Bayesian inference. Nucleic Acids Res 35:2141–2152

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama K (2001) U Box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111–33120

    Article  PubMed  CAS  Google Scholar 

  • Heck J, Cheung S, Hampton R (2010) Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc Natl Acad Sci U S A 107:1106–11011

    Article  PubMed  CAS  Google Scholar 

  • Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12:1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  PubMed  CAS  Google Scholar 

  • Horrocks P, Newbold C (2000) Intraerythrocytic polyubiquitin expression in Plasmodium falciparum is subjected to developmental and heat-shock control. Mol Biochem Parasitol 105:115–125

    Article  PubMed  CAS  Google Scholar 

  • Jentsch S, Seufert W, Hauser H (1991) Genetic analysis of the ubiquitin system. Biochim Biophys Acta 1089:127–139

    PubMed  CAS  Google Scholar 

  • Jin L, Williamson A, Banerjee S, Philipp I, Rape M (2008) Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133:653–665

    Article  PubMed  CAS  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  PubMed  CAS  Google Scholar 

  • Kosarev P, Mayer K, Hardtke C (2002) Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome. Genome Biol 3:RESEARCH0016.0011–RESEARCH0016.0012

    Article  Google Scholar 

  • Kostova Z, Tsai Y, Weissman A (2007) Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin Cell Dev Biol 18:770–779

    Article  PubMed  CAS  Google Scholar 

  • Kumari V, Sharma R, Yadav V, Gupta A, Bhattacharya A, Bhattacharya S (2011) Differential distribution of a SINE element in the Entamoeba histolytica and Entamoeba dispar genomes: role of the LINE encoded endonuclease. BMC Genomics 12:267

    Article  PubMed  CAS  Google Scholar 

  • LaCount D, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth J, Schoenfeld L, Ota I, Sahasrabudhe S, Kurschner C, Fields S, Hughes R (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438:103–107

    Article  PubMed  CAS  Google Scholar 

  • Lindenthal C, Weich N, Chia Y, Heussler V, Klinkert M (2005) The proteasome inhibitor MLN-273 blocks exoerythrocytic and erythrocytic development of Plasmodium parasites. Parasitology 131:37–44

    Article  PubMed  CAS  Google Scholar 

  • Lorenzi H, Thiagarajan M, Haas B, Wortman J, Hall N, Caler E (2008) Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species. BMC Genomics 9:595

    Article  PubMed  Google Scholar 

  • Lorenzi H, Puiu D, Miller J, Brinkac L, Amedeo P, Hall N, Caler E (2010) New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis 4:e716

    Article  PubMed  Google Scholar 

  • Madsen L, Schulze A, Seeger M, Hartmann-Petersen R (2007) Ubiquitin domain proteins in disease. BMC Biochem 8(Suppl 1):S1

    Article  PubMed  Google Scholar 

  • Manning-Cela R, Jaishankar S, Swindle J (2006) Life-cycle and growth-phase-dependent regulation of the ubiquitin genes of Trypanosoma cruzi. Arch Med Res 37:593–601

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Wickliffe K, Dong K, Yu C, Bosanac I, Bustos D, Phu L, Kirkpatrick D, Hymowitz S, Rape M, Kelly RF, Dixit VM (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39:477–484

    Article  PubMed  CAS  Google Scholar 

  • Merlet J, Burger J, Gomes J, Pintard L (2009) Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci 66:1924–1938

    Article  PubMed  CAS  Google Scholar 

  • Michelle C, Vourch P, Mignon L, Andres C (2009) What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J Mol Evol 68:616–628

    Article  PubMed  CAS  Google Scholar 

  • Myler M (2008) Searching the Tritryp genomes for drug targets. Adv Exp Med Biol 625:133–140

    Article  PubMed  CAS  Google Scholar 

  • Newton K, Vucic D (2007) Ubiquitin ligases in cancer: ushers for degradation. Cancer Invest 25:502–513

    Article  PubMed  CAS  Google Scholar 

  • Noma A, Sakaguchi Y, Suzuki T (2009) Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 37:1335–1352

    Article  PubMed  CAS  Google Scholar 

  • Parry G, Estelle M (2004) Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol 15:221–229

    Article  PubMed  CAS  Google Scholar 

  • Ponder E, Bogyo M (2007) Ubiquitin-like modifiers and their deconjugating enzymes in medically important parasitic protozoa. Eukaryot Cell 6:1943–1952

    Article  PubMed  CAS  Google Scholar 

  • Ponts N, Yang J, Chung D, Prudhomme J, Girke T, Horrocks P, Roch KL (2008) Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PLoS One 3:e2386

    Article  PubMed  Google Scholar 

  • Purdy J, Pho L, Mann B, Petri WJ (1996) Upstream regulatory elements controlling expression of the Entamoeba histolytica lectin. Mol Biochem Parasitol 34:7891–7903

    Google Scholar 

  • Raasi S, Wolf D (2007) Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin Cell Dev Biol 18:780–791

    Article  PubMed  CAS  Google Scholar 

  • Rassi S, Schmidtke G, Groettrup M (2001) The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J Biol Chem 276:35334–35343

    Article  Google Scholar 

  • Rhodes D, Bd B, Trowsdale J (2005) Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? Immunology 116:411–417

    PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Ritchie K, Zhang D (2004) ISG15: the immunological kin of ubiquitin. Semin Cell Dev Biol 15:237–246

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo-Brenni M, Morgan D (2007) Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130:127–139

    Article  PubMed  CAS  Google Scholar 

  • Romero-Díaz M, Gómez C, López-Reyes I, Martínez M, Orozco E, Rodríguez M (2010) Structural and functional analysis of the Entamoeba histolytica EhrabB gene promoter. Gene 455:32–42

    Article  Google Scholar 

  • Salvat C, Wang G, Dastur A, Lyon N, Huibregtse J (2004) The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases. J Biol Chem 279:18935–18943

    Article  PubMed  CAS  Google Scholar 

  • Schlieker C, Veen AVd, Damon J, Spooner E, Ploegh H (2008) A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc Natl Acad Sci U S A 105:18255–18260

    Article  PubMed  CAS  Google Scholar 

  • Schüle T, Rose M, Entian K, Thumm M, Wolf D (2000) Ubc8p functions in catabolite degradation of fructose-1, 6-bisphosphate in yeast. EMBO J 19:2161–2167

    Article  PubMed  Google Scholar 

  • Shilova V, Garbuz D, Myasyankina E, Chen B, Evgen’ev M, Feder M, Zatsepina O (2006) Remarkable site specificity of local transposition into the Hsp70 promoter of Drosophila melanogaster. Genetics 173:809–820

    Article  PubMed  CAS  Google Scholar 

  • Skaar J, Pagano M (2009) Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr Opin Cell Biol 21:816–824

    Article  PubMed  CAS  Google Scholar 

  • Stone S, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Nakamura M, Nariai Y, Dekio S, Tanigawa Y (1996) Monoclonal nonspecific suppressor beta (MNSF beta) inhibits the production of TNF-alpha by lipopolysaccharide-activated macrophages. Immunology 195:187–198

    CAS  Google Scholar 

  • Varshavsky A (1997) The N-end rule pathway of protein degradation. Genes Cells 2:13–28

    Article  PubMed  CAS  Google Scholar 

  • Whitney N, Pearson L, Lunsford R, McGill L, Gomer R, Lindsey D (2006) A putative Ariadne-like ubiquitin ligase is required for Dictyostelium discoideum development. Eukaryot Cell 5:1820–1825

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson C, Dittmar G, Ohi M, Uetz P, Jones N, Finley D (2004) Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr Biol 14:2283–2288

    Article  PubMed  CAS  Google Scholar 

  • Wöstmann C, Tannich E, Grunwald T (1992) Ubiquitin of Entamoeba histolytica deviates in six amino acid residues from the consensus of all other known ubiquitins. FEBS 308:54–58

    Article  Google Scholar 

  • Wöstmann C, Liakopoulous D, Ciechanover A, Grunwald T (1996) Characterization of ubiquitin genes and transcripts and demonstration of an ubiquitin-conjugating system in Entamoeba histolytica. Mol Biochem Parasitol 82:81–92

    Article  PubMed  Google Scholar 

  • Xu P, Duong D, Seyfried N, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Meyer H, Rapoport T (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656

    Article  PubMed  CAS  Google Scholar 

  • Ying M, Zhan Z, Wang W, Chen D (2009) Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid. Gene 447:72–85

    Article  PubMed  CAS  Google Scholar 

  • Zhao J (2007) Sumoylation regulates diverse biological processes. Cell Mol Life Sci 64:3017–3033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Department of Science and Technology to ST. SA was supported by fellowship from the University Grants Commission. PG was supported by the Defense Research and Development Organization grant to ST. We thank Dr. Sudha Bhattacharya for sharing the data on transposons. We are grateful to Dr Sudha and Alok Bhattacharya for critical reading of the manuscript and for many stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Tiwari.

Additional information

Shweta Arya and Gaurav Sharma contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(PDF 78 kb)

Online resource 2

(PDF 79 kb)

Online resource 3

(PDF 172 kb)

Online resource 4

(PDF 272 kb)

Online resource 5

(PDF 85 kb)

Online resource 6

(PDF 93 kb)

Online resource 7

(PDF 152 kb)

Online resource 8

(PDF 100 kb)

Online resource 9

(PDF 169 kb)

Online resource 10

(PDF 96 kb)

Online resource 11

(PDF 101 kb)

Online resource 12

(PDF 98 kb)

Online resource 13

(PDF 88 kb)

Online resource 14

(PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arya, S., Sharma, G., Gupta, P. et al. In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species. Parasitol Res 111, 37–51 (2012). https://doi.org/10.1007/s00436-011-2799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2799-0

Keywords

Navigation