Parasitology Research

, Volume 110, Issue 6, pp 2325–2332 | Cite as

The use of COI barcodes for molecular identification of forensically important fly species in Germany

  • Petra BoehmeEmail author
  • Jens Amendt
  • Richard Zehner
Original Paper


Deoxyribonucleic acid (DNA)-based insect identification has become a routine and accurate tool in forensic entomology. In the present study, we demonstrate the utility of the mitochondrial DNA cytochrome oxidase I gene “barcoding region” as a universal marker for molecular identification of forensically important Diptera. We analyzed 111 specimens belonging to 13 species originating from Frankfurt am Main, Germany (Calliphoridae: Calliphora vicina, Calliphora vomitoria, Lucilia ampullacea, Lucilia caesar, Lucilia illustris, Lucilia sericata, Lucilia silvarum, Phormia regina, Protophormia terraenovae; Piophilidae: Parapiophila vulgaris; Muscidae: Hydrotaea dentipes, Hydrotaea ignava, Hydrotaea similis). Intraspecific variation ranged from 0 to 1.17% and interspecific variation occurred between 1.17% and 15.21%. Although differences within species were generally less than among species, divergence percentages overlapped due to low interspecific nucleotide divergence of the recently separated sister species L. caesar and L. illustris. However, all species formed distinct monophyletic clades and thus the cytochrome oxidase 1 (COI) barcode has been shown suitable for clear differentiation and identification of forensically relevant Diptera in Germany.


Nest Polymerase Chain Reaction Sister Species Barcoding Region Forensic Entomology Lucilia Sericata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Sabrina Peddinghaus (RWTH Aachen University), Heike Fremdt (Goethe-University Frankfurt), and Dr. Krzysztof Szpila (Nicolaus Copernicus University) for providing specimens and morphological identification. Thanks to Dr. Christine Picard and Dr. Baneshwar Singh (Texas A&M University) for helpful suggestions.


  1. Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJR (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol. doi: 10.1007/s12024-010-9209-2
  2. Ball SL, Hebert PDN, Burian SK, Webb JM (2005) Biological identification of mayflies (Ephemeroptera) using DNA barcodes. J N Am Bentholl Soc 24:245–255Google Scholar
  3. Boehme P, Amendt J, Disney RHL, Zehner R (2010) Molecular identification of carrion-breeding scuttle flies (Diptera:Phoridae) using COI barcodes. Int J Legal Med 124:577–581PubMedCrossRefGoogle Scholar
  4. Desmyter S, Gosselin M (2009) COI sequence variability between Chrysomyinae of forensic interest. Forensic Sci Int Genet 3:89–95PubMedCrossRefGoogle Scholar
  5. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  6. Gregor F, Rozkosny R, Bartak M, Vanhara J (2002) The Muscidae (Diptera) of Central Europe. Folia Fac Sci Nat Univ Masaryk Brun, Biol, 107, Masaryk University, Brno, Czech Republic, 271 ppGoogle Scholar
  7. Harvey ML, Dadour IR, Gaudieri S (2003) Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in Western Australia. Forensic Sci Int 131:134–139PubMedCrossRefGoogle Scholar
  8. Harvey ML, Gaudieri S, Villet MH, Dadour IR (2008) A global study of forensically significant calliphorids: implications for identification. Forensic Sci Int 177:66–76PubMedCrossRefGoogle Scholar
  9. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321PubMedCrossRefGoogle Scholar
  10. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817PubMedCrossRefGoogle Scholar
  11. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004b) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663CrossRefGoogle Scholar
  12. Meiklejohn KA, Wallman JF, Dowton M (2011) DNA-based identification of forensically important Australian Sarcophagidae (Diptera). Int J Legal Med 125:27–32PubMedCrossRefGoogle Scholar
  13. Nelson LA, Wallmann JF, Dowton M (2007) Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 21:44–52PubMedCrossRefGoogle Scholar
  14. Picard CJ, Villet MH, Wells JD (2011) Amplified fragment length polymorphism confirms reciprocal monophyly in Chrysomya putoria and Chrysomya chloropyga: a correction of reported shared mtDNA haplotypes. Med Vet Entomol. doi: 10.1111/j.1365-2915.2011.00976.x
  15. Reibe S, Schmitz J, Madea B (2009) Molecular identification of forensically important blowfly species (Diptera: Calliphoridae) from Germany. Parasitol Res 106:257–261PubMedCrossRefGoogle Scholar
  16. Rognes K (1991) Blowflies (Diptera, Calliphoridae) of Fennoscandia and Denmark. Fauna Ent Scand 24. E.J. Brill/Scandinavian Science Press, Leiden, New York, København, KölnGoogle Scholar
  17. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring, p 2344 ppGoogle Scholar
  18. Schilthuizen M, Scholte C, Van Wijk REJ, Dommershuijzen J, Van der Horst D, Meijer zu Schlochtern M, Lievers R, Groenenberg DSJ (2011) Using DNA-barcoding to make the necrobiont beetle family Cholevidae accessible for forensic entomology. Forensic Sci Int. doi: 10.1016/j.forsciint.2011.02.003
  19. Schroeder H, Klotzbach H, Elias S, Augustin C, Pueschel K (2003) Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Sci Int 132:76–81PubMedCrossRefGoogle Scholar
  20. Smith KGV (1986) A manual of forensic entomology. Cornell University Press, London, p 205 ppGoogle Scholar
  21. Sperling FAH, Anderson GS, Hickey DA (1994) A DNA-based approach to the identification of insect species used for postmortem interval estimation. J Forensic Sci 39:418–427PubMedGoogle Scholar
  22. Stevens JR, Wall R, Wells JD (2002) Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species. Insect Mol Biol 11:141–148PubMedCrossRefGoogle Scholar
  23. Wallman JF, Leys R, Hogendoorn K (2005) Molecular systematics of Australian carrion-breeding blowflies (Diptera: Calliphoridae) based on mitochondrial DNA. Invert Syst 19:1–15CrossRefGoogle Scholar
  24. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B 360:1847–1857CrossRefGoogle Scholar
  25. Wells JD, Stevens JR (2008) Application of DNA-based methods in forensic entomology. Annu Rev Entomol 53:103–120PubMedCrossRefGoogle Scholar
  26. Wells JD, Wall R, Stevens JR (2007) Phylogenetic analysis of forensically important Lucilia flies based on cytocrome oxidase I sequence: a cautionary tale for species determination. Int J Legal Med 121:229–233PubMedCrossRefGoogle Scholar
  27. Zehner R, Amendt J, Schütt S, Sauer J, Krettek R, Povolný D (2004) Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae). Int J Legal Med 118:245–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Forensic MedicineGoethe-University FrankfurtFrankfurt am MainGermany
  2. 2.Department of Aquatic EcotoxicologyGoethe-University FrankfurtFrankfurt am MainGermany

Personalised recommendations