Skip to main content

Advertisement

Log in

Adult mortality and blood feeding behavioral effects of α-amyrin acetate, a novel bioactive compound on in vivo exposed females of Anopheles stephensi Liston (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The effect of α-amyrin acetate on mortality and blood feeding behavior in females of Anopheles stephensi was assessed by in vivo exposure on treated guinea pig skin. In vivo exposure to α-amyrin acetate caused mosquito knock down in the form of rapidly and normally reversible paralysis and the subsequent record at the end of a 24 h, revealed mortality rates of females increased from 0.0% (Control) to 76.9% at 1.6% α-amyrin acetate, the highest concentration which implies the contact toxicity of the α-amyrin acetate received through the sensitive parts of test species. The mean probing time responses significantly increased (P < 0.05) from 5.3 s (Control) to 22.9 s at 1.6% α-amyrin acetate. The blood feeding rates and the mean engorgement times were significantly shorter when compared to the control. The mean blood feeding rates of exposed females decreased from 91.7% (control) to 41.5% at 0.8% α-amyrin acetate concentrations, the mean engorgement time also decreased from 278.6 s (Control) to 158.7 s at 0.8% α-amyrin acetate concentrations. Mean blood feeding rates and mean engorgement time were statistically significant (P < 0.05) from that of control. The mean fecundity levels significantly reduced from 96.2 (Control) to 65.95%. The shortened mean engorgement time and smaller blood meal size have played a more important role in decline of fecundity. In vivo exposure to α-amyrin acetate caused increased mean probing time, decreased blood engorgement time and feeding rate and declined fecundity which reduce the overall survival and reproductive capacity of the malaria vector A. stephensi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ansari MA, Razdan RK (1994) Repellent action of Cymbopogon martini martini Stapf. var. Sofia against mosquitoes. Indian J Malarial 31:95–102

    CAS  Google Scholar 

  • Backett AH, Stenlake JB (1986) Chromatography. In: Practical Pharmaceutical chemistry, Vol. 23rd edition, Delhi, India 75–76

  • Chadee DD, Beier JC (1995) Blood-engorgement kinetics of four anopheline mosquitoes from Trinidad West Indies. Ann Trop Med Parasitol 89:55–62

    PubMed  CAS  Google Scholar 

  • Chadee DD, Beier JC (1997) Factors influencing the duration of blood-feeding by laboratory-reared and wild Aedes aegypti (Diptera: Culicidae) from Trinidad West Indies. Ann Trop Med Parasitol 91:199–120

    PubMed  CAS  Google Scholar 

  • Chenniappan K, Kadarkari M (2008) oviposition deterrent, ovicidal and gravid mortality effects of ethanolic extract of andrographis paniculata nees against the malarial vector Anopheles stephensi liston (diptera: culicidae). Entomol Res 38:119–125

    Google Scholar 

  • Clements AN (1992) The biology of mosquitoes. Volume 1: development, nutrition and reproduction. Chapman and Hall, London, UK

  • Colless DH, Chellaph WT (1960) Effects of body weight and size of blood-meal upon egg production in Aedes aegypti (Linneaus) (Diptera: Culicidae). Ann Trop Med Parasitol 54:475–482

    Google Scholar 

  • Corbel V, Duchon S, Zain M, Hougard P (2004) Dinotefuran: a potential neonicotinoid insecticide against resistant mosquitoes. J Med Entomol 41:713–717

    Article  Google Scholar 

  • Curtis CF, Lines JD, Lu B, Renz A (1991) Natural and synthetic repellents. In: Curtis CF (ed) Control of Disease Vector in the Community. Wolfe Publishing, London, pp 75–92

    Google Scholar 

  • Dekker T, Ignell R, Ghebru M, Glinwood R, Hopkins R (2011) Identification of mosquito repellent odours from Ocimum forskolei Para & Vect 4:183–190

    Google Scholar 

  • Egon and Stahl (1969) A laboratory hand book, 2nd ed. Springer Verlag, New York, USA

  • Feleke1 S, Brehane A (2005) Triterpene compounds from the latex of ficus sur i. Bull Chem Soc Ethiop 19:307–310

    Google Scholar 

  • Fradin MS (1998) Mosquitoes and mosquito repellents: a clinical guide. Ann Int Med 128:931–939

    PubMed  CAS  Google Scholar 

  • Govere J, Durrheim DN, Du TN, Hunt RH, Coetzee M (2000) Local plants as repellents against Anopheles arabiensis in Mpumalanga Province South Africa. Central Afr J Med 46:213–216

    CAS  Google Scholar 

  • Govindarajan M, Sivakumar R (2011) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2669-9

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2263-1

  • Heinz M, Schmahl G, Schmidt J (2011) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res. doi:10.1007/s00436-004-1297-z

  • Khan AA, Maibach HI, Strauss WG, Fenley WR (1965) Screening humans for degrees of attractiveness to mosquitoes. J Econ Entomol 58:694–697

    PubMed  CAS  Google Scholar 

  • Koren G, Matsui D, Bailey B (2003) DEET-based insect repellents: safety implications for children and pregnant and lactating women. Can Med Assoc 169:209–212

    Google Scholar 

  • Kuppusamy C, Murugan K (2006) Repellency of α-amyrin acetate against the malarial vector An. stephensi (Diptera: Culicidae) In: International Conference on Diversity of Insects: Challenging Issues in Management and Conservation p. 201(Abstract 134); 30 January–3 February 2006 Tamil Nadu, India

  • Kuppusamy C, Murugan K, Arul N, Yasodha P (2009) Larvicidal and insect growth regulator effect of α-amyrin acetate from Catharanthus Roseus Linn against the malaria vector Anopheles Stephensi Liston (Diptera: Culicidae). Entomol Res 39:78–83

    Article  Google Scholar 

  • Macdonald WW (1956) Aedes aegypti in Malaysia: II. Larval and adult biology. Ann Trop Med Parasitol 50:399–414

    PubMed  CAS  Google Scholar 

  • Govindarajan M, Sivakumar R (2011) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res. doi: 10.1007/s00436-011-2669-9

  • Ndlebe VJ, Crouch NR, Mulholland DA (2008) Triterpenoids from the African tree Phyllanthus polyanthus. Phytoche Let 1:11–17

    Google Scholar 

  • Odalo JO, Omolo MO, Malebo H, Angira J, Njeru PM, Ndiege IO, Hassanali A (2005) Repellency of essential oils of some plants from the Kenyan coast against Anopheles gambiae. Acta Trop 95:210–218

    Article  PubMed  CAS  Google Scholar 

  • Oyedele AO, Gbolade AA, Sosan MB, Adewoyin FB, Soyelu OL, Orafidiya OO (2002) Formulation of an effective mosquito-repellent topical product from Lemongrass oil. Phytomedicine 9:259–262

    Article  PubMed  CAS  Google Scholar 

  • Pandey SK, Upadhyay S, Tripathi AK (2011) Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res. doi:10.1007/s00436-009-1429-6

  • Patel JR, Jyani DB, Patel CC, Board PK (1990) Chari MS, Ram Prasad GJ (eds) Botanicals Pesticides Integrated Pest Management. Indian Society of Tobacco Science, Rajahmundry, India

    Google Scholar 

  • Pushpanathan T, Jebanesan A, Govindarajan M (2011) The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-008-0907-6

  • Rastogi K, Kapil RS, Popli SP (1980) New alkaloids from tabernaemontana divaricate. phytoche 19:1209–1212

    Google Scholar 

  • Robert LL, Hallam A, Seeley DC, Roberts IV, Wirtz RA (1991) Comparative sensitivity of four Anopheles (Diptera: Culicidae) to five repellents. J Med Entomol 14:417–420

    Google Scholar 

  • Roy DN (1936) On the role of blood in ovulation in Aedes aegypti. Linn Bull Entomol Res 27:423–429

    Article  Google Scholar 

  • Rutledge CC, Mossa MA, Lower CA, Sofield RK (1978) Comparative sensitivity of mosquito species and strains to the repellent diethyl toluamide. J Med Entmol 14:536–541

    CAS  Google Scholar 

  • SAS Institute (2001) The SAS system for Windows, release 8.1. SAS Institute, Cary, NC

    Google Scholar 

  • Saxena RC, Jayashree S, Padma S, Dixit OP (1994) Evaluation of growth disrupting activity of Ageratum conyzoides crude extract on Culex quinquefasciatus (Diptera: Culicidae). J Envital Biol 15:67–74

  • Schreck CE (1977) Techniques for the evaluation of insect repellents: a critical review. Annu Rev Entomol 22:101–119

    Article  PubMed  CAS  Google Scholar 

  • Seyoum A, Pålsson K, Kung S, Kabiru EW, Lwande W, Killeen GF, Hassanali A, Knots BGJ (2002) Traditional use of mosquito repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: ethno-botanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg 96:225–231

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Metha SS, Neoliya NK, Shukla YN, Mishra M (2003) New possible insect growth regulators from Catharanthus roseus. Curr Sci 84:1184–1186

    CAS  Google Scholar 

  • Smith CN, Gilbert IH, Gouck HK, Bowman BC (1963) Factors affecting the protection period of mosquito repellents. USDA, Agricultural Research Service, Technical Bulletin No. 1285, pp 1–36

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University Press, Ames, IA

    Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    PubMed  CAS  Google Scholar 

  • Takken W, Knols BGJ (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Ann Rev Entomol 44:131–157

    Article  CAS  Google Scholar 

  • Tawatsin A, Wratten SD, Scott RR, Thavara U, Techandamrongsin Y (2001) Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 26:76–82

    PubMed  CAS  Google Scholar 

  • Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phytother Res 19:303–309

    Article  PubMed  CAS  Google Scholar 

  • Tuetun B, Choochote W, Pongpaibul Y, Junkum A, Kanjanapothi D, Chaithong U, Jitpakdi A, Riyong D, Pitaswat B (2011) Celery-based topical repellents as a potential natural alternative for personal protection against mosquitoes. Parasitol Res. doi:10.1007/s00436-008-1167-1

  • Walker TW, Robert LL, Copeland RA, Githeko AK, Wirtz RA, Githure JJ, Klein TA (1996) Field evaluation of arthropod repellents DEET and a piperidine compound A13-37220 against Anopheles funestus and An. cubiensis in western Kenya. J Am Mosq Contr Assoc 12:172–176

    CAS  Google Scholar 

  • Woke PA (1937) Comparative effects of the blood of different species of vertebrates on egg production of Aedes aegypti Linn. Ann Entomol Soc Am 17:729–745

    Google Scholar 

  • Woke PA, Ally MS, Rosenberger R (1956) The number of eggs developed related to the quantities of human blood ingested in Aedes aegypti (L.) (Diptera: Culicidae). Ann Entomol Soc Am 49:435–441

    Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field-testing of mosquito larvicides. WHO/CDS/WHOPES/ GCDPP/2005.13

  • Xue Rui-De, Ali A, Barnard DR (2007) Effects of in vivo exposure to DEET on blood feeding behavior and fecundity in Anopheles quadrimaculatus (Diptera: Culicidae). Exp Parasitol 116:201–204

    Article  PubMed  CAS  Google Scholar 

  • Xue RD, Barnard DR (1999) Effects of partial blood engorgement and pretest carbohydrate availability on the repellency of deet to Aedes albopictus. J Vect Eco 24:111–114

    Google Scholar 

Download references

Acknowledgement

We thank Dr K. Sridar komuddy for constant encouragement and critical evaluation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuppusamy Chenniappan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenniappan, K., Kadarkari, M. Adult mortality and blood feeding behavioral effects of α-amyrin acetate, a novel bioactive compound on in vivo exposed females of Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110, 2117–2124 (2012). https://doi.org/10.1007/s00436-011-2737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2737-1

Keywords

Navigation