In vitro amoebicidal activity of ethanol extracts of Arachis hypogaea L., Curcuma longa L. and Pancratium maritimum L. on Acanthamoeba castellanii cysts

Abstract

Acanthamoeba castellanii causes amoebic keratitis which is a painful sight-threatening disease of the eyes. Its eradication is difficult because the amoebas encyst making it highly resistant to anti-amoebic drugs, but several medicinal plants have proven to be more effective than the usual therapy. This study aimed to evaluate the in vitro amoebicidal activity of ethanol extracts of Arachis hypogaea L. (peanut), Curcuma longa L. (turmeric), and Pancratium maritimum L. (sea daffodil) on A. castellanii cysts. Acanthamoeba were isolated from keratitic patients, cultivated on 1.5% non-nutrient agar, and then incubated with different concentrations of plant extracts which were further evaluated for their cysticidal activity. The results showed that all extracts had significant inhibitory effect on the multiplication of Acanthamoeba cysts as compared to the drug control (chlorhexidine) and non-treated control, and the inhibition was time and dose dependent. The ethanol extract of A. hypogaea had a remarkable cysticidal effect with minimal inhibitory concentration (MIC) of 100 mg/ml in all incubation periods, while the concentrations of 10 and 1 mg/ml were able to completely inhibit growth after 48 and 72 h, respectively. The concentrations 0.1 and 0.01 mg/ml failed to completely inhibit the cyst growth, but showed growth reduction by 64.4–82.6% in all incubation periods. C. longa had a MIC of 1 g and 100 mg/ml after 48 and 72 h, respectively, while the concentrations 10, 1, and 0.1 mg/ml caused growth reduction by 60–90.3% in all incubation periods. P. maritimum had a MIC of 200 mg/ml after 72 h, while the 20-, 2-, 0.2-, and 0.02-mg/ml concentrations showed growth reduction by 34–94.3% in all incubation periods. All extracts seemed to be more effective than chlorhexidine which caused only growth reduction by 55.3–80.2% in all incubation periods and failed to completely inhibit the cyst growth. In conclusion, ethanol extracts of A. hypogaea, C. longa, and P. maritimum could be considered a new natural agent against the Acanthamoeba cyst.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allam G (2009) Immunomodulatory effects of curcumin treatment on murine schistosomiasis mansoni. Immunobiology 214(8):712–727

    PubMed  Article  CAS  Google Scholar 

  2. Araújo CAC, Alegrio LV, Castro D, Lima MEF, Gomes-Cardoso L, Leon LL (1999) Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis. Mem Inst Oswaldo Cruz 94:791–794

    PubMed  Article  Google Scholar 

  3. Berkov S, Evstatieva L, Popov S (2004) Alkaloids in Bulgarian Pancratium maritimum L. Z Naturforsch C 59(1–2):65–69

    PubMed  CAS  Google Scholar 

  4. Brantner A, Grein E (1994) Antibacterial activity of plant extracts used externally in traditional medicine. J Ethnopharmacol 44:35–40

    PubMed  Article  CAS  Google Scholar 

  5. Chu DM, Miles H, Toney D, Ngyuen C, Marciano-Cabral F (1998) Amebicidal activity of plant extracts from Southeast Asia on Acanthamoeba spp. Parasitol Res 84:746–752

    PubMed  Article  CAS  Google Scholar 

  6. Cui L, Miao J, Cui L (2007) Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 51(2):488–494

    PubMed  Article  CAS  Google Scholar 

  7. Degerli S, Berk S, Malatyali E, Tepe B (2011) Screening of the in vitro amoebicidal activities of Pastinaca armenea (Fisch. & C.A.Mey.) and Inula oculus-christi (L.) on Acanthamoeba castellanii cysts and trophozoites. Parasitol Res. doi:10.1007/s00436-011-2524-z

  8. Derda M, Hadaś E, Thiem B (2009) Plant extracts as natural amoebicidal agents. Parasitol Res 104:705–708

    PubMed  Article  Google Scholar 

  9. Ehlers N, Hjortdal J (2004) Are cataract and iris atrophy toxic complications of medical treatment of Acanthamoeba keratitis? Acta Ophthalmol Scand 82:228–231

    PubMed  Article  Google Scholar 

  10. Gautom RK, Fritsche TR, Lindquist TD (1998) Acanthamoeba keratitis. In: Tasman W, Jaeger EA (eds) Duane's ophthalmology: CD-ROM edition, vol 2. Lippincott-Raven, Philadelphia, ch 80

    Google Scholar 

  11. Goze I, Alim A, Dag S, Tepe B, Polat ZA (2009) In vitro amoebicidal activity of Salvia staminea and Salvia caespitosa on Acanthamoeba castellanii and their cytotoxic potentials on corneal cells. J Ocul Pharmacol Ther 25(4):293–298

    PubMed  Article  CAS  Google Scholar 

  12. Haddad M, Sauvain M, Deharo E (2011) Curcuma as a parasiticidal agent: a review. Planta Med 77(6):672–678

    PubMed  Article  CAS  Google Scholar 

  13. Hirano K, Sai S (1999) Sever Acanthamoeba sclerokeratitis in a non contact lens wearer. Acta Ophthalmol Scand 76:347–348

    Article  Google Scholar 

  14. Init I, Lau YL, Arin Fadzlun A, Foead AI, Neilson RS, Nissapatorn V (2010) Detection of free living amoebae, Acanthamoeba and Naegleria, in swimming pools, Malaysia. Trop Biomed 27(3):566–577

    PubMed  CAS  Google Scholar 

  15. Ishita C, Kaushik B, Uday B, Ranajit KB (2004) Turmeric and curcumin: biological actions and medicinal applications. Current Sci 87(1):44–53

    Google Scholar 

  16. Kaya GI, Sarıkaya B, Çiçek D, Somer NU (2010) In vitro cytotoxic activity of Sternbergia sicula. S. lutea and Pancratium maritimum extracts. Hacet Univ J Fac Pharm 30(1):41–48

    Google Scholar 

  17. Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:55–62

    Article  Google Scholar 

  18. Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondo K, Tsuda Y (1993) Nematocidal activity of Turmeric: synergistic action of curcuminoids. Chem Pharm Bul 41:140–1643

    Article  Google Scholar 

  19. Koide T, Nose M, Ogihara Y, Yabu Y, Ohta N (2002) Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull 25:131–133

    PubMed  Article  CAS  Google Scholar 

  20. Kumar R, Lioyd D (2002) Recent advances in the treatment of Acanthamoeba keratitis. Clin Infect Dis 35(4):434–441

    PubMed  Article  Google Scholar 

  21. Leitsch D, Köhsler M, Marchetti-Deschmann M, Deutsch A, Allmaier G, Duchêne M, Walochnik J (2010) Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryot Cell 9(4):611–618

    PubMed  Article  CAS  Google Scholar 

  22. Lin J, Opoku AR, Geheeb-Keller M et al (1999) Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities. J Ethnopharmacol 68:267–274

    PubMed  Article  CAS  Google Scholar 

  23. Malatyali E, Tepe B, Degerli S, Berk S, Akpulat HA (2011) In vitro amoebicidal activity of four Peucedanum species on Acanthamoeba castellanii cysts and trophozoites. Parasitol Res. doi:10.1007/s00436-011-2466-5

  24. Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307

    PubMed  Article  Google Scholar 

  25. Martinez AJ, Janitschke K (1985) Acanthamoeba, an opportunistic microorganism: a review. Infection 13:251–256

    PubMed  Article  CAS  Google Scholar 

  26. Meingasser JG, Thurner J (1979) Strain of Trichomonas vaginalis resistant to metronidazole and other 5-nitroimidazoles. Antimicrob Agents Chemother 15:254–257

    Google Scholar 

  27. Obeid WN, Araújo R, Vieira LA, Machado MAC (2003) Ceratite bilateral por Acanthamoeba—Relato de caso. Arq Bras Oftalmol 66:876–880

    Article  Google Scholar 

  28. Ouarzane-Amara M, Franetich JF, Mazier D, Pettit GR, Meijer L, Doerig C, Desportes-Livage I (2001) In vitro activities of two antimitotic compounds, pancratistatin and 7-deoxynarciclasine, against Encephalitozoon intestinalis, a microsporidium causing infections in humans. Antimicrob Agents Chemother 45(12):3409–3415

    PubMed  Article  CAS  Google Scholar 

  29. Palmas C, Wakelin D, Gabriele F (1984) Transfer of immunity against Hymenolepis nana in mice with lymphoid cells or serum from infected donors. Parasitol 89:287–293

    Article  Google Scholar 

  30. Pandey S, Kekre N, Naderi J, McNulty J (2005) Induction of apoptotic cell death specifically in rat and human cancer cells by pancratistatin. Artif Cells Blood Substit Immobil Biotechnol 33(3):279–295

    PubMed  Article  CAS  Google Scholar 

  31. Parekh J, Chanda S (2007) Antibacterial and phytochemical studies on twelve species of Indian medicinal plants. Afr J Biol Res 10:175–181

    Google Scholar 

  32. Parekh J, Chanda S (2008) Antibacterial activity of aqueous and alcoholic extracts of 34 Indian medicinal plants against some Staphylococcus species. Turk J Biol 32:63–71

    Google Scholar 

  33. Peret-Almeida L, Naghetini C, Nunan E, Junqueira RG, Gloria MBA (2008) In vitro antimicrobial activity of the ground rhizome, curcuminoid pigments and essential oil of Curcuma longa L. Ciencia e Agrotecnologia 32(3):875–881

    Article  CAS  Google Scholar 

  34. Pérez-Arriaga L, Mendoza-Magańa ML, Cortés-Zàrate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromàn R, Ramírez-Herrera MA (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 98:152–161

    PubMed  Article  Google Scholar 

  35. Perrine D, Chenu JP, Georges P, Lancelot JC, Saturnino C, Robba M (1995) Amoebicidal efficiencies of various diamidines against two strains of Acanthamoeba polyphaga. Antimicrob Agents Chemother 39:339–342

    PubMed  CAS  Google Scholar 

  36. Polat ZA, Tepe B, Vural A (2007a) In vitro effectiveness of Thymus sipyleus subsp. sipyleus var. sipyleus on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. Parasitol Res 101:1551–1555

    PubMed  Article  Google Scholar 

  37. Polat ZA, Vural A, Tepe B, Cetin A (2007b) In vitro amoebicidal activity of four Allium species on Acanthamoeba castellanii and their cytotoxic potentials on corneal cells. Parasitol Res 101:397–402

    PubMed  Article  Google Scholar 

  38. Polat ZA, Vural A, Ozan F, Tepe B, Özcelik S, Cetin A (2008) In vitro evaluation of the amoebicidal activity of garlic (Allium sativum) extract on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. J Ocul Pharmacol Ther 24:8–14

    PubMed  Article  CAS  Google Scholar 

  39. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474

    PubMed  Article  CAS  Google Scholar 

  40. Ródio C, da Roch VD, Kowalski KP, Panatieri LF, von Poser G, Rott MB (2008) In vitro evaluation of the amebicidal activity of Pterocaulon polystachyum (Asteraceae) against trophozoites of Acanthamoeba castellanii. Parasitol Res 104:191–194

    PubMed  Article  Google Scholar 

  41. Seal DW, Beattie TK, Tomlinson A, Fan D (2003) Acanthamoeba keratitis in England and Wales: incidence, outcome and risk factors. Br J Ophthalmol 87:516–517

    PubMed  Article  CAS  Google Scholar 

  42. Sener B, Orhan I, Satayavivad J (2003) Antimalarial activity screening of some alkaloids and the plant extracts from Amaryllidaceae. Phytother Res 17(10):1220–1223

    PubMed  Article  CAS  Google Scholar 

  43. Shahiduzzaman M, Dyachenko V, Khalafalla RE, Desouky AY, Daugschies A (2009) Effects of curcumin on Cryptosporidium parvum in vitro. Parasitol Res 105(4):1155–1161

    PubMed  Article  CAS  Google Scholar 

  44. Sobolev VS, Khan SI, DE TabancaN W, Manly SP et al (2011) Biological activity of Peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids. J Agric Food Chem 59:1673–1682

    PubMed  Article  CAS  Google Scholar 

  45. Sür-Altiner D, Gürkan E, Mutlu G, Tuzlaci E, Ang Ö (1999) The antifungal activity of Pancratium maritimum. Fitoterapia 70:187–189

    Article  Google Scholar 

  46. Tepe B, Degerli S, Arslan S, Malatyali E, Sarikurkcu C (2011a) Determination of chemical profile, antioxidant, DNA damage protection and antiamoebic activities of Teucrium polium and Stachys iberica. Fitoterapia 82:237–246

    PubMed  Article  CAS  Google Scholar 

  47. Tepe B, Malatyali E, Degerli S, Berk S (2011b) In vitro amoebicidal activities of Teucrium polium and T. chamaedrys on Acanthamoeba castellanii trophozoites and cysts. Parasitol Res. doi:10.1007/s00436-011-2698-4

  48. Torno MS Jr, Babapour R, Gurevitch A, Witt MD (2000) Cutaneous acanthamoebiasis in AIDS. J Am Acad Dermatol 42(2):351–354

    PubMed  Article  Google Scholar 

  49. Wang ML, Gillaspie AG, Morris JB, Pittman RN, Davis J, Pederson GA (2008) Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Gen Res 6:62–69

    CAS  Google Scholar 

  50. Wilson FM (1991) Toxic and allergic reactions to topical ophthalmic medications. In: Arffa RC (ed) Grayson's diseases of the cornea, 3rd edn. Mosby, Maryland Heights, p 632

    Google Scholar 

  51. Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745

    PubMed  Article  CAS  Google Scholar 

  52. Youssef DTA, Ramadan MA, Khalifa AA (1998) Acetophenones, a chalcone, a chromone and flavonoids from Pancratium maritimum. Phytochem 49(8):2579–2583

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabah Abd-El-Ghany Ahmed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Sayed, N.M., Ismail, K.A., Ahmed, S.AEG. et al. In vitro amoebicidal activity of ethanol extracts of Arachis hypogaea L., Curcuma longa L. and Pancratium maritimum L. on Acanthamoeba castellanii cysts. Parasitol Res 110, 1985–1992 (2012). https://doi.org/10.1007/s00436-011-2727-3

Download citation

Keywords

  • Minimal Inhibitory Concentration
  • Curcumin
  • Ethanol Extract
  • Babesia
  • Curcuma Longa