Advertisement

Parasitology Research

, Volume 111, Issue 5, pp 2023–2033 | Cite as

Lousicidal activity of synthesized silver nanoparticles using Lawsonia inermis leaf aqueous extract against Pediculus humanus capitis and Bovicola ovis

  • Sampath Marimuthu
  • Abdul Abdul RahumanEmail author
  • Thirunavukkarasu Santhoshkumar
  • Chidambaram Jayaseelan
  • Arivarasan Vishnu Kirthi
  • Asokan Bagavan
  • Chinnaperumal Kamaraj
  • Gandhi Elango
  • Abdul Abduz Zahir
  • Govindasamy Rajakumar
  • Kanayairam Velayutham
Original Paper

Abstract

In the present work, we describe inexpensive, nontoxic, unreported and simple procedure for synthesis of silver nanoparticles (Ag NPs) using leaf aqueous extract of Lawsonia inermis as eco-friendly reducing and capping agent. The aim of the present study was to assess the lousicidal activity of synthesized Ag NPs against human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), and sheep body louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). Direct contact method was conducted to determine the potential of pediculocidal activity and impregnated method was used with slight modifications to improve practicality and efficiency of tested materials of synthesized Ag NPs against B. ovis. The synthesized Ag NPs characterized with the UV showing peak at 426 nm. X-ray diffraction (XRD) spectra clearly shows that the diffraction peaks in the pattern indexed as the silver with lattice constants. XRD analysis showed intense peaks at 2θ values of 38.34°, 44.59°, 65.04°, and 77.77° corresponding to (111), (200), (220), and (311) Bragg’s reflection based on the fcc structure of Ag NPs. Fourier transform infrared spectroscopy (FTIR) spectra of Ag NPs exhibited prominent peaks at 3,422.13, 2,924.12, 2,851.76, 1,631.41, 1,381.60, 1,087.11, and 789.55 cm-1. Scanning electron microscopy (SEM) micrograph showed mean size of 59.52 nm and aggregates of spherical shape Ag NPs. Energy dispersive X-ray spectroscopy (EDX) showed the complete chemical composition of the synthesized Ag NPs. In pediculocidal activity, the results showed that the optimal times for measuring percent mortality effects of synthesized Ag NPs were 26, 61, 84, and 100 at 5, 10, 15, and 20 min, respectively. The average percent mortality for synthesized Ag NPs was 33, 84, 91, and 100 at 10, 15, 20, and 35 min, respectively against B. ovis. The maximum activity was observed in the aqueous leaf extract of L. inermis, 1 mM AgNO3 solution, and synthesized Ag NPs against P. humanus capitis with LC50 values of 18.26, 7.77, and 1.33 mg l-1 and r 2 values of 0.863, 0.900, and 0.803 and against B. ovis showed with LC50 values of 21.19, 8.49, and 1.41 mg l-1 and r 2 values of 0.920, 0.938 and 0.870, respectively. The findings revealed that synthesized Ag NPs possess excellent anti-lousicidal activity.

Keywords

Azadirachtin Head Louse AgNO3 Solution Leaf Aqueous Extract Aqueous AgNO3 Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to C. Abdul Hakeem College Management, Dr. W. Abdul Hameed, Principal, Dr. Hameed Abdul Razack, Associate Professor and HOD of Zoology Department, for their help and support.

References

  1. Abdel-Ghaffar F, Semmler M (2007) Efficacy of a Neem seed extract shampoo on head lice of naturally infected humans in Egypt. Parasitol Res 100:329–332PubMedCrossRefGoogle Scholar
  2. Abdel-Ghaffar F, Sobhy HM, Al-Quraishy S, Semmler M (2008) Field study of an extract of Neem seed (MiteStop®) against the red mite Dermanyssus gallinae naturally infecting poultry in Egypt. Parasitol Res 103:481–485PubMedCrossRefGoogle Scholar
  3. Abdel-Ghaffar F, Semmler M, Al-Rasheid K, Mehlhorn H (2009) In vitro efficacy of Bye Mite® and Mite-Stop® on developmental stages of the red chicken mite Dermanyssus gallinae. Parasitol Res 105:1469–1471PubMedCrossRefGoogle Scholar
  4. Abdel-Ghaffar F, Semmler M, Al-Rasheid KAS, Klimpel S, Mehlhorn H (2010) Comparative in-vitro tests on the efficacy and safety of 13 anti-head lice products. Parasitol Res 106:423–429PubMedCrossRefGoogle Scholar
  5. Abulyazid I, Elsayed ME, Mahdy B, Ragaa M, Ahmed M (2010) Biochemical study for the effect of henna (Lawsonia inermis) on Escherichia coli. Arab J Chem. doi: 10.1016/j.arabjc.2010.10.005
  6. Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269PubMedCrossRefGoogle Scholar
  7. Ahmadian S, Fakhree MA (2009) Henna (Lawsonia inermis) might be used to prevent mycotic infection. Med Hypotheses 73:629–630PubMedCrossRefGoogle Scholar
  8. Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490PubMedCrossRefGoogle Scholar
  9. Bagavan A, Rahuman AA, Kamaraj C, Elango G, Zahir AA, Jayaseelan C, Santhoshkumar T, Marimuthu S (2011) Contact and fumigant toxicity of hexane flower bud extract of Syzygium aromaticum and its compounds against Pediculus humanus capitis (Phthiraptera: Pediculidae). Parasitol Res. doi: 10.1007/s00436-011-2425-1
  10. Bäumler S (2007) Heilpflanzen, Praxis heute [Medicinal plants, praxis of today]. Urban and Fischer, München, p 989Google Scholar
  11. Blamey PC, Kopittke PM, Wehr JB, Kinraide TB, Menzies NW (2010) Rhizotoxic effects of silver in cowpea seedlings. Environ Toxicol Chem 29:2072–2078PubMedGoogle Scholar
  12. Burgess IF (2004) Human lice and their control. Annu Rev Entomol 49:457–81PubMedCrossRefGoogle Scholar
  13. Burgess IF (2009) Current treatments for Pediculosis capitis. Curr Opin Infect Dis 22:131–136PubMedCrossRefGoogle Scholar
  14. Burkhart CG, Burkhart CN, Burkhart KM (1998) An assessment of topical and oral prescription and over the counter treatments for head lice. J Am Acad Dermatol 38:979–982PubMedCrossRefGoogle Scholar
  15. Carpinella MC, Miranda M, Almirón WR, Ferrayoli CG, Almeida FL, Palacios SM (2007) In vitro pediculicidal and ovicidal activity of an extract and oil from fruits of Melia azedarach L. J Am Acad Dermatol 56(2):250–256PubMedCrossRefGoogle Scholar
  16. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583PubMedCrossRefGoogle Scholar
  17. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 15(12):4583–8CrossRefGoogle Scholar
  18. Chung WH, Chang YC, Yang LJ, Hung SI, Wong WR, Lin JY (2002) Clinicopathologic features of skin reactions to temporary tattoos and analysis of possible causes. Arch Dermatol 138:88PubMedCrossRefGoogle Scholar
  19. Colebrook E, Wall R (2004) Ectoparasites of livestock in Europe and the Mediterranean region. Vet Parasitol 120:251–274PubMedCrossRefGoogle Scholar
  20. Cueto GM, Zerba E, Picollo MI (2008) Evidence of pyrethroid resistance in eggs of Pediculus humanus capitis (Phthiraptera: Pediculidae) from Argentina. J Med Entomol 45:693–697PubMedCrossRefGoogle Scholar
  21. Dethloff GM, Naddy RB, Gorsuch JW (2007) Effects of sodium chloride on chronic silver toxicity to early life stages of rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 26:1717–1725PubMedCrossRefGoogle Scholar
  22. Downs AM, Stafford KA, Hunt LP, Ravenscroft JC, Coles GC (2002) Widespread insecticide resistance in head lice to the over the counter pediculocides in England, and the emergence of carbaryl resistance. Br J Dermatol 146:88PubMedCrossRefGoogle Scholar
  23. Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Digest J Nanomater Biostruct 4:537–543Google Scholar
  24. Duran N, Marcato PD, Alves O, Souza G (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanotechnol 3:8Google Scholar
  25. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531PubMedCrossRefGoogle Scholar
  26. Fajimi AK, Taiwo AA (2005) Herbal remedies in animal parasitic diseases in Nigeria: a review. African J Biotechnol 4:303–307Google Scholar
  27. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge Univ, Press, Cambridge, UKGoogle Scholar
  28. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604CrossRefGoogle Scholar
  29. Habbal OA, Al-Jabri AA, El-Hag AG (2007) Antimicrobial properties of Lawsonia inermis (henna): a review. Aust J Med Herbalism 19:114–125Google Scholar
  30. Heath ACG, Cooper SM, Cole DJ, Bishop DM (1995a) Evidence for the role of the sheep biting-louse Bovicola ovis in producing cockle, a sheep pelt defect. Vet Parasitol 59:53–58PubMedCrossRefGoogle Scholar
  31. Heath ACG, Cole DJW, Bishop DM, Pfeffer A, Cooper SM, Risdon P (1995b) Preliminary investigations into the aetiology and treatment of cockle; a sheep pelt defect. Vet Parasitol 56:239–254PubMedCrossRefGoogle Scholar
  32. Heath ACG, Lampkin N, Jowett JH (1995c) Evaluation of non-conventional treatments for control of the biting louse (Bovicola ovis) on sheep. Med Vet Entomol 4:407–412CrossRefGoogle Scholar
  33. Hensel RN (2000) The challenge of choosing a pediculicide. Public Health Nurs 17:300–304PubMedCrossRefGoogle Scholar
  34. Heukelbach J, Oliveira FA, Speare R (2006) A new shampoo based on Neem (Azadirachta indica) is highly effective against head lice in vitro. Parasitol Res 99(4):353–356PubMedCrossRefGoogle Scholar
  35. Table of characteristic IR absorptions (2011) http://orgchem.colorado.edu/hndbksupport/specttutor/irchart.html. Accessed in 2011
  36. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105114CrossRefGoogle Scholar
  37. Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194PubMedCrossRefGoogle Scholar
  38. Kafka AP, McLeod BJ, Rades T, McDowell A (2011) Release and bioactivity of PACA nanoparticles containing d-Lys6-GnRH for brushtail possum fertility control. J Control Release 149(3):307–313PubMedCrossRefGoogle Scholar
  39. Kang M, Jung R, Kim HS, Youk JH, Jin HJ (2007) Silver nanoparticles incorporated electrospun silk fibers. J Nanosci Nanotechnol 7(11):3888–3891PubMedCrossRefGoogle Scholar
  40. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71(1):133–137PubMedCrossRefGoogle Scholar
  41. Kim SI, Na YE, Yi JH, Kim BS, Ahn YJ (2007) Contact and fumigant toxicity of oriental medical plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 145:377–382PubMedCrossRefGoogle Scholar
  42. Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109(2):461–472PubMedCrossRefGoogle Scholar
  43. Kong H, Jang J (2006) One-step fabrication of silver nanoparticles embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem Commun 3010–3012Google Scholar
  44. Kowshik M, Ashtaputre S, Kharrazi S (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  45. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76(1):50–56PubMedCrossRefGoogle Scholar
  46. Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 85(10):1301–1309CrossRefGoogle Scholar
  47. Levot G (1995) Resistance and the control of sheep ectoparasites. Int J Parasitol 25(11):1355–1362PubMedCrossRefGoogle Scholar
  48. Liu N, Xu Q, Zhu F, Zhang L (2006) Pyrethroid resistance in mosquitoes. Insect Sci 13:159–166CrossRefGoogle Scholar
  49. Malcolm CE, Bergman JN (2007) Trying to keep ahead of lice: a therapeutic challenge. Skin Ther Lett 11:1–6Google Scholar
  50. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549PubMedCrossRefGoogle Scholar
  51. McLeod RS (1995) Costs of major parasites to the Australian livestock industries. Int J Parasitol 25:1363–1367PubMedCrossRefGoogle Scholar
  52. Mehlhorn H (2008) Encyclopedia of parasitology, vol 2, 3 rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  53. Mehlhorn B, Mehlhorn H (2009) Louse alarm. Düsseldorf Univ, PressGoogle Scholar
  54. Mehlhorn H, Eichenlaub D, Löscher T, Peters W (1995) Diagnosis and therapy of human parasites, 2nd edn. G. Fischer, StuttgartGoogle Scholar
  55. Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365PubMedCrossRefGoogle Scholar
  56. Mehlhorn H, Abdel-Ghaffar F, Al-Rasheid K (2010) It isn’t nice to have lice—a natural Neem-based shampoo stops them! Nat Med South Africa (in press)Google Scholar
  57. Mehlhorn H, Abdel-Ghaffar F, Al-Rasheid KA, Schmidt J, Semmler M (2011) Ovicidal effects of a Neem seed extract preparation on eggs of body and head lice. Parasitol Res. doi: 10.1007/s00436-011-2374-8
  58. Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:15196CrossRefGoogle Scholar
  59. Milnes AS, Green LE (1999) Prevalence of lice on dairy cattle in England and the bordering counties of Wales. Vet Rec 145:357–362PubMedCrossRefGoogle Scholar
  60. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103PubMedCrossRefGoogle Scholar
  61. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  62. Mumcuoglu KY, Miller I, Zamir C, Zentner G, Helbin V, Ingber A (2002) The in vivo pediculicidal efficacy of a natural remedy. Isr Med Assoc J 4:790–793PubMedGoogle Scholar
  63. Mumucuoglu Y, Gilead L, Ingber A (2009) New insights in pediculosis and scabies. Expert Rev Dermatol 4:285–302CrossRefGoogle Scholar
  64. Naddy RB, Gorsuch JW, Rehner AB, McNerney GR, Bell RA, Kramer JR (2007) Chronictoxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating. Aquat Toxicol 84(1):1–10PubMedCrossRefGoogle Scholar
  65. Nafstad O, Gronstol H (2001) Eradication of lice in cattle. Acta Vet Scand 42:81–89PubMedCrossRefGoogle Scholar
  66. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964PubMedCrossRefGoogle Scholar
  67. Nyamador WS, Ketoh GK, Amevoin K, Nuto Y, Koumaglo HK, Glitho IA (2010) Variation in the susceptibility of two Callosobruchus species to essential oils. J Stored Prod Res 46:48–51CrossRefGoogle Scholar
  68. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  69. Oladimeji FA, Orafidiya OO, Ogunniyi TA, Adewunmi TA (2000) Pediculocidal and scabicidal properties of Lippia multiflora essential oil. J Ethnopharmacol 72(2):305–311PubMedCrossRefGoogle Scholar
  70. Parashar UK, Saxenaa PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Biostruct 4:159–166Google Scholar
  71. Picollo MI, Vassena C, Casadio A, Massimo J, Zerba E (1998) Laboratory studies of susceptibility and resistance to insecticides in Pediculus capitis (Anoplura: Pediculidae). J Med Entomol 35:814–817PubMedGoogle Scholar
  72. Picollo MI, Vassena C, Mougabure Cueto G, Vernetti M, Zerba E (2000) Resistance to insecticides and effect of synergists on permethrin toxicity in Pediculus capitis (Anoplura: Pediculidae) from Buenos Aires. J Med Entomol 37:721–725PubMedCrossRefGoogle Scholar
  73. Roberts RJ (2002) Clinical practice. Head lice. N Engl J Med 346:1645–1650PubMedCrossRefGoogle Scholar
  74. Robinson D, Leo N, Prociv P, Barker S (2003) Potential role of Pediculus humanus capitis, as vectors of Rickettsia prowazekii. Parasitol Res 90:209–211PubMedGoogle Scholar
  75. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702PubMedCrossRefGoogle Scholar
  76. Sasaki T, Poudel S, Isawa H, Hayashi T, Sekia N, Tomita T, Sawabe K, Kobayashi M (2006) First Molecular Evidence of Bartonella quintana in Pediculus humanus capitis (Phthiraptera: Pediculidae), Collected from Nepalese Children. J Med Entomol 43:110–112PubMedCrossRefGoogle Scholar
  77. Semmler M, Abdel-Ghaffar F, Al-Rasheid K, Klimpel S, Mehlhorn H (2010) Repellency against head lice (Pediculus humanus capitis). Parasitol Res 106(3):729–731PubMedCrossRefGoogle Scholar
  78. Semmler M, Abdel-Ghaffar F, Al-Quraishy S, Al-Rasheid KA, Mehlhorn H (2011) Why is it crucial to test anti-lice repellents? Parasitol Res. doi: 10.1007/s00436-011-2483-4
  79. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicit in earthworms (Eisenia fetida). Nanotoxicology. doi: 10.3109/17435390.2010.537382
  80. Siddiqui BS, Kardar MN, Ali ST, Khan S (2003) Two new and a known compound from Lawsonia inermis. Helv Chim Acta 86(6):2164–2169CrossRefGoogle Scholar
  81. Souza GIH, Marcato PD, Duran N, Esposito E (2004) Utilization of Fusarium oxysporum in the biosynthesis of silver nanoparticles and its antibacterial activities. In: IX National Meeting of Environmental Microbiology Curtiba, PR (Brazil), Abstract, p 25Google Scholar
  82. SPSS (2007) SPSS for Windows, version 16.0, release 16.0.0. Chicago, IL, USAGoogle Scholar
  83. Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131PubMedCrossRefGoogle Scholar
  84. Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41PubMedCrossRefGoogle Scholar
  85. Yang YC, Choi HY, Choi WS, Clark JM, Ahn YJ (2004a) Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J Agric Food Chem 52:2507–2511PubMedCrossRefGoogle Scholar
  86. Yang YC, Lee HS, Clark JM, Ahn YJ (2004b) Insecticidal activity of plant essential oils against Pediculus humanus capitis (Anoplura: Pediculidae). J Med Entomol 41:699–704PubMedCrossRefGoogle Scholar
  87. Yang YC, Lee HS, Lee SH, Clark JM, Ahn YJ (2005) Ovicidal and adulticidal activities of Cinnamomum zeylanicum bark essential oil compounds and related compounds against Pediculus humanus capitis (Anoplura: Pediculicidae). Int J Parasitol 35:1595–1600PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sampath Marimuthu
    • 1
  • Abdul Abdul Rahuman
    • 1
    Email author
  • Thirunavukkarasu Santhoshkumar
    • 1
  • Chidambaram Jayaseelan
    • 1
  • Arivarasan Vishnu Kirthi
    • 1
  • Asokan Bagavan
    • 1
  • Chinnaperumal Kamaraj
    • 1
  • Gandhi Elango
    • 1
  • Abdul Abduz Zahir
    • 1
  • Govindasamy Rajakumar
    • 1
  • Kanayairam Velayutham
    • 1
  1. 1.Post Graduate and Research Department of ZoologyUnit of Nanotechnology and Bioactive Natural Products, C. Abdul Hakeem CollegeVellore DistrictIndia

Personalised recommendations