Skip to main content

Advertisement

Log in

Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Global pollinator decline has recently been discussed in the context of honey and bumble bee infections from various pathogens including viruses, bacteria, microsporidia and mites. The microsporidian pathogens Nosema apis, Nosema ceranae and Nosema bombi may in fact be major candidates contributing to this decline. Different molecular and non-molecular detection methods have been developed; however, a comparison, especially of the highly sensitive PCR based methods, is currently lacking. Here, we present the first comparative quantitative real-time PCR study of nine Nosema spp. primers within the framework of primer specificity and sensitivity. With the help of dilution series of defined numbers of spores, we reveal six primer pairs amplifying N. apis, six for N. bombi and four for N. ceranae. All appropriate primer pairs detected an amount of at least 104 spores, the majority of which were even as sensitive to detect such low amounts as 103 to ten spores. Species specificity of primers was observed for N. apis and N. bombi, but not for N. ceranae. Additionally, we did not find any significant correlation for the amplified fragments with PCR efficiency or the limit of detection. We discuss our findings on the background of false positive and negative results using quantitative real-time PCR. On the basis of these results, future research might be based on appropriate primer selection depending on the experimental needs. Primers may be selected on the basis of specificity or sensitivity. Pathogen species and load may be determined with higher precision enhancing all kinds of diagnostic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bérénos C, Schmid-Hempel P, Wegner KM (2009) Evolution of host resistance and trade-offs between virulence and transmission potential in an obligately killing parasite. J Evol Biol 22:2049–2056

    Article  PubMed  Google Scholar 

  • Bhat SA, Bashir I, Kamili AS (2009) Microsporidiosis of silkworm, Bombyx mori L. (Lepidoptera-bombycidae): a review. Afr J Agricult Res 4:1519–1523

    Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois AL, Rinderer TE, Beaman LD, Danka RG (2010) Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. J Invertebr Pathol 103:53–58

    Article  PubMed  CAS  Google Scholar 

  • Bromenshenk JJ, Henderson CB, Wick CH, Stanford MF, Zulich AW, Jabbour RE, Deshpande SV, McCubbin PE, Seccomb RA, Welch PM, Williams T, Firth DR, Skowronski E, Lehmann MM, Bilimoria SL, Gress J, Wanner KW, Cramer RA Jr (2010) Iridovirus and microsporidian linked to honey bee colony decline. PloS ONE 5(10):e13181

    Article  PubMed  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. PNAS USA 108:662–667

    Article  PubMed  CAS  Google Scholar 

  • Chaimanee V, Warrit N, Chantawannakul P (2010) Infections of Nosema ceranae in four different honeybee species. J Invertebr Pathol 105:207–210

    Article  PubMed  Google Scholar 

  • Chen YP, Huang ZY (2010) Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie 41:364–374

    Article  CAS  Google Scholar 

  • Chen YP, Evans JD, Murphy C, Gutell R, Zuker M, Gundensen-Rindal D, Pettis JS (2009) Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. J Eukaryot Microbiol 56:142–147

    Article  PubMed  CAS  Google Scholar 

  • Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan P-L, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  PubMed  CAS  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50:227–230

    Article  PubMed  CAS  Google Scholar 

  • Fantham HB, Porter A (1914) The morphology, biology and economic importance of Nosema bombi, N. sp., parasitic in various humble bees (Bombus spp.). Ann Trop Med Parasit 8:623–638

    Google Scholar 

  • Fayer R, Santín M, Trout JM (2003) First detection of microsporidia in dairy calves in North America. Parasitol Res 90:383–386

    Article  PubMed  CAS  Google Scholar 

  • Forsgren E, Fries I (2010) Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet Parasitol 170:212–217

    Article  PubMed  Google Scholar 

  • Fries I, de Ruijter A, Paxton RJ, da Silva AJ, Slemenda SB, Pieniazek NJ (2001) Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a note on its sites of infection in Bombus terrestris (Hymenoptera: Apoidea). J Apicult Res 40:91–96

    CAS  Google Scholar 

  • Fries I, Feng F, Da Silva A, Slemeda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecularcharacterization of a microsporidian parasite of the Asian honeybee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365

    Article  Google Scholar 

  • Gatehouse HS, Malone LA (1998) The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size. J Invertebr Pathol 71:97–105

    Article  PubMed  CAS  Google Scholar 

  • Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373

    Article  PubMed  Google Scholar 

  • Giersch T, Berg T, Galea F, Hornitzky M (2009) Nosema ceranae infects honey bees (Apis mellifera) and contaminates honey in Australia. Apidologie 40:117–123

    Article  CAS  Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  PubMed  CAS  Google Scholar 

  • Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:93–95

    Article  PubMed  CAS  Google Scholar 

  • Higes M, Martín-Hernández R, Martínez-Salvador A, Garrido-Bailón E, González-Porto AV, Meana A, Bernal JL, del Nozal MJ, Berna J (2010) A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ Microbiol Rep 2:243–250

    Article  Google Scholar 

  • Hodgkin J, Partridge FA (2008) Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS Biol 6(12):e1000005

    Article  Google Scholar 

  • Kahler AM, Thurston-Enriquez JA (2007) Human pathogenic microsporidia detection in agricultural samples: method development and assessment. Parasitol Res 100:529–538

    Article  PubMed  Google Scholar 

  • Klee J, Tay WT, Paxton RJ (2006) Specific and sensitive detection of Nosema bombi (Microsporidia: Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of partial rRNA gene sequences. J Invertebr Pathol 91:98–104

    Article  PubMed  CAS  Google Scholar 

  • Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh CX, Puerta F, Ruz JM, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10

    Article  PubMed  Google Scholar 

  • Martin-Hernández R, Meana A, Prieto L, Salvador AM, Garrido-Bailón E, Higes M (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microb 73:6331–6338

    Article  Google Scholar 

  • Otti O, Schmid-Hempel P (2007) Nosema bombi: a pollinator parasite with detrimental fitness effects. J Invertebr Pathol 96:118–124

    Article  PubMed  Google Scholar 

  • Paxton RJ, Klee J, Korpela S, Fries I (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38:558–565

    Article  Google Scholar 

  • Plischuk S, Martín-Hernández R, Prieto L, Lucía M, Botías C, Meana A, Abrahamovich AH, Lange C, Higes M (2009) South American native bumblebees (Hymenoptera:Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ Microbiol Rep 1:131–135

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Methods in molecular biology, Volume 132: Bioinformatics Methods and Protocols, ed. Misener S, Krawetz SA, Totowa, NJ Humana Press; pp. 365–386

  • Sagastume S, del Águila C, Martín-Hernández R, Higes M, Henriques-Gil N (2010) Polymorphism and recombination for rDNA in the putatively asexual microsporidian Nosema ceranae, a pathogen of honeybees. Environ Microbiol 13:84–95

    Article  Google Scholar 

  • Shykoff J, Schmid-Hempel P (1991) Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 22:117–125

    Article  Google Scholar 

  • Stevanovic J, Stanimirovic Z, Genersch E, Kovacevic SR, Ljubenkovic J, Radakovic M, Aleksic N (2010) Dominance of Nosema ceranae in honey bees in the Balkan countries in the absence of symptoms of colony collapse disorder. Apidologie 42:49–58

    Article  Google Scholar 

  • Tay WT, O’Mahony EM, Paxton RJ (2005) Complete rRNA gene sequences reveal that the microsporidium Nosema bombi infects diverse bumblebee (Bombus spp.) hosts and contains multiple polymorphic sites. J Eukaryot Microbiol 52:505–513

    Article  PubMed  CAS  Google Scholar 

  • Tounou AK, Kooyman C, Douro-Kpindou OK, Gumedzoe YM, Poehlingn HM (2011) Laboratory assessment of the potential of Paranosema locustae to control immature stages of Schistocerca gregaria and Oedaleus senegalensis and vertical transmission of the pathogen in host populations. Biocontrol Sci Techn 21:605–617

    Article  Google Scholar 

  • Valencakova A, Balent P, Ravaszova P, Horak A, Obornik M, Halanova M, Malcekova B, Novotny F, Goldova M (2011) Molecular identification and genotyping of microsporidia in selected hosts. Parasitol Res. doi:10.1007/s00436-011-2543-9

  • vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4(8):e6481

    Article  PubMed  Google Scholar 

  • Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451

    Article  Google Scholar 

  • Webster TC, Pomper KW, Hunt G, Thacker EM, Jones SC (2004) Nosema apis infection in worker and queen Apis mellifera. Apidologie 5:49–54

    Article  Google Scholar 

  • Zander E (1909) Tierische Parasiten als Krankenheitserreger bei der Biene. Münchener Bienenzeitung 31:196–204

    Google Scholar 

Download references

Acknowledgements

We thank the group of Paul Schmid-Hempel (ETH Zurich) for providing N. bombi-infected bumble bees and Denise Kleber for technical assistance within the lab. Financial support was granted by the Bundesministerium für Bildung und Forschung (BMBF) program FUGATO-Plus (FKZ: 0315126 to HMGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Erler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erler, S., Lommatzsch, S. & Lattorff, H.M.G. Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris . Parasitol Res 110, 1403–1410 (2012). https://doi.org/10.1007/s00436-011-2640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2640-9

Keywords

Navigation