Skip to main content

Advertisement

Log in

Calmodulin expression during Giardia intestinalis differentiation and identification of calmodulin-binding proteins during the trophozoite stage

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Calmodulin (CaM) is the primary sensor for calcium in the cell. It modulates various functions by activating CaM-binding proteins (CaMBPs). This study examined the calcium/CaM-dependent system in the ancient eukaryote Giardia intestinalis. A specific antibody against the parasite’s CaM was developed; this protein’s expression and location during different stages of the parasite’s life cycle were analyzed. The results showed that it is a housekeeping protein which is possibly involved in the parasite’s motility. No CaMBP has been identified in G. intestinalis to date. Pull-down assays were used for isolating proteins which specifically bind to CaM in a calcium-dependent way. Three of them were identified through mass spectrometry; they were GASP180, α-tubulin, and pyruvate phosphate dikinase (PPDK).The first two are cytoskeleton proteins, and the last one is an essential enzyme for glycolysis. The presence of binding sites was analyzed through bioinformatics in each protein sequence. This is the first report of a CaMBP in this organism; it is considered to be a very interesting differentiation model, indicating that CaM is involved at least in two vital processes: G. intestinalis motility and energetic metabolism

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475

    Article  PubMed  CAS  Google Scholar 

  • Alvarado ME, Wasserman M (2006) Quick and efficient purification of Giardia intestinalis cysts from fecal samples. Parasitol Res 99:300–302

    Article  PubMed  CAS  Google Scholar 

  • Alvarado ME, Wasserman M (2010) Analysis of phosphorylated proteins and inhibition of kinase activity during Giardia intestinalis excystation. Parasitol Int 59:54–61

    Article  PubMed  CAS  Google Scholar 

  • Bernal RM, Tovar R, Santos JI, Muñoz ML (1998) Possible role of calmodulin in excystation of Giardia lamblia. Parasitol Res 84:687–693

    Article  PubMed  CAS  Google Scholar 

  • Bingham AK, Meyer EA (1979) Giardia excystation can be induced in vitro in acidic solutions. Nature 277:301–302

    Article  PubMed  CAS  Google Scholar 

  • Boone JH, Wilkins TD, Nash TE, Brandon JE, Macias EA, Jerris RC, Lyerly DM (1999) TechLab and alexon Giardia enzyme-linked immunosorbent assay kits detect cyst wall protein 1. J Clin Microbiol 37:611–614

    PubMed  CAS  Google Scholar 

  • Bringaud F, Baltz D, Baltz T (1998) Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase. Proc Natl Acad Sci USA 95:7963–7968

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    Article  PubMed  CAS  Google Scholar 

  • Elmendorf HG, Dawson SC, McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33:3–28

    Article  PubMed  Google Scholar 

  • Elmendorf HG, Rohrer SC, Khoury RS, Bouttenot RE, Nash TE (2005) Examination of a novel head-stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil domains. Int J Parasitol 35:1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Feng XM, Cao LJ, Adam RD, Zhang XC, Lu SQ (2008) The catalyzing role of PPDK in Giardia lamblia. Biochem Biophys Res Commun 367:394–398

    Article  PubMed  CAS  Google Scholar 

  • Goldenring JR, Casanova JE, DeLorenzo RJ (1984) Tubulin-associated calmodulin-dependent kinase: evidence for an endogenous complex of tubulin with a calcium-calmodulin-dependent kinase. J Neurochem 43:1669–1679

    Article  PubMed  CAS  Google Scholar 

  • Hulen D, Baron A, Salisbury J, Clarke M (1991) Production and specificity of monoclonal antibodies against calmodulin from Dictyostelium discoideum. Cell Motil Cytoskel 18:113–122

    Article  CAS  Google Scholar 

  • Kane AV, Ward HD, Keusch GT, Pereira ME (1991) In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J Parasitol 77:974–981

    Article  PubMed  CAS  Google Scholar 

  • Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488

    Article  PubMed  CAS  Google Scholar 

  • Kumagai H, Nishida E, Ishiguro K, Murofushi H (1980) Isolation of calmodulin from the protozoan, Tetrahymena pyriformis, by the use of a tubulin-sepharose 4B affinity column. J Biochem 87:667–670

    PubMed  CAS  Google Scholar 

  • Luján HD, Mowatt MR, Conrad JT, Bowers B, Nash TE (1995) Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem 270:29307–29313

    Article  PubMed  Google Scholar 

  • Marinho-Carvalho MM, Costa-Mattos PV, Spitz GA, Zancan P, Sola-Penna M (2009) Calmodulin upregulates skeletal muscle 6-phosphofructo-1-kinase reversing the inhibitory effects of allosteric modulators. Biochim Biophys Acta 1794:1175–1180

    PubMed  CAS  Google Scholar 

  • Martin SR, Biekofsky RR, Skinner MA, Guerrini R, Salvadori S, Feeney J, Bayley PM (2004) Interaction of calmodulin with the phosphofructokinase target sequence. FEBS Lett 577:284–288

    Article  PubMed  CAS  Google Scholar 

  • McCartney JE, Blum JJ, Vanaman TC (1984) Polyclonal antibody that recognizes calcium-dependent determinants in Tetrahymena calmodulin. Biochemistry 23:5956–5963

    Article  PubMed  CAS  Google Scholar 

  • Mertens E (1993) ATP versus pyrophosphate: glycolisis revisited in parasitic protists. Parasitol Today 9:122–126

    Article  PubMed  CAS  Google Scholar 

  • Muñoz ML, Weinbach EC, Wieder SC, Claggett CE, Levenbook L (1987) Giardia lamblia: detection and characterization of calmodulin. Exp Parasitol 63:42–48

    Article  PubMed  Google Scholar 

  • Narasimhulu SB, Kao YL, Reddy AS (1997) Interaction of Arabidopsis kinesin-like calmodulin-binding protein with tubulin subunits: modulation by Ca(2+)-calmodulin. Plant J 12:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Nohýnkova E, Dráber P, Reischig J, Kulda J (2000) Localization of gamma-tubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis. Eur J Cell Biol 79:438–445

    Article  PubMed  Google Scholar 

  • O’Neil KT, DeGrado WF (1990) How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci 15:59–64

    Article  PubMed  Google Scholar 

  • Padilla R, Maccioni RB, Avila J (1990) Calmodulin binds to a tubulin binding site of the microtubule-associated protein tau. Mol Cell Biochem 97:35–41

    Article  PubMed  CAS  Google Scholar 

  • Reiner DS, Hetsko ML, Meszaros JG, Sun CH, Morrison HG, Brunton LL, Gillin FD (2003) Calcium signaling in excystation of the early diverging eukaryote, Giardia lamblia. J Biol Chem 278:2533–2540

    Article  PubMed  CAS  Google Scholar 

  • Saavedra-Lira E, Ramirez-Silva L, Perez-Montfort R (1998) Expression and characterization of recombinant pyruvate phosphate dikinase from Entamoeba histolytica. Biochim Biophys Acta 1382:47–54

    Article  PubMed  CAS  Google Scholar 

  • Slamovits CH, Keeling PJ (2006) Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolisis in anaerobic eukaryotes. Eukaryot Cell 5:148–154

    Article  PubMed  CAS  Google Scholar 

  • Stathopulos PB, Ames JB, Ikura M (2007) Structural aspects of calcium binding proteins and their interactions with targets. In: Krebs J, Michalak M (eds) Calcium: a matter of life or death. Elsevier, Amsterdam, p 96

    Google Scholar 

  • Thompson RC (2000) Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int J Parasitol 30:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Schneider A, Westermann S, Müller N, Plessmann U (1997) Posttranslational modifications of alpha- and beta-tubulin in Giardia lamblia, an ancient eukaryote. FEBS Lett 419:87–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universidad Nacional de Colombia (Bogotá Research Division project 8003154). We would like to thank Entidad Promotora de Salud Compensar for supplying the clinical samples. We are also extremely grateful to Dr. Franklin Berger (University of South Carolina) for having allowed us to conduct the MALDI-TOF experiments in his laboratory and to Sandra P. Melo for her valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés Wasserman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, M.E., Wasserman, M. Calmodulin expression during Giardia intestinalis differentiation and identification of calmodulin-binding proteins during the trophozoite stage. Parasitol Res 110, 1371–1380 (2012). https://doi.org/10.1007/s00436-011-2637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2637-4

Keywords

Navigation