Skip to main content
Log in

Effects of protein extract from head–foot tissue of Oncomelania hupensis on the growth and gene expression of mother sporocysts of Schistosoma japonicum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Oncomelania hupensis is the intermediate host of Schistosoma japonicum. In the present study, we investigated the effects of protein extracts from head–foot or gland tissue of O. hupensis on mother sporocysts of S. japonicum cultured in vitro. In the presence of head–foot protein extract of snails from the native province Hunan, in-vitro-transformed mother sporocysts presented not only a longer survival time and stronger motility, but also a bigger size than parasites cultured with protein extracts of glands of the same snail or head–foot tissue of a non-native snail from the Hubei province. Using suppression subtractive hybridization, two subtractive libraries were constructed on the basis of RNA of sporocysts cultured with or without native snail head–foot protein extract. A number of 31 transcripts were found to be up-regulated. Sequence analyses revealed that they represented genes involved among others in metabolic process, electron transport chain, response to chemical stimulus, and oxidation–reduction processes. Opposite to that 20 down-regulated transcripts were among others related to pseudouridine synthesis, RNA processing, and ribosome biogenesis. The differential expression of three of these transcripts, encoding cytochrome c oxidase subunit 2 (Cox2), NADH-ubiquinone oxidoreductase (ND1), and dyskeratosis congenita 1 protein (DKC1), were confirmed by real-time PCR. The promoted development and the differential gene expression of cultured sporocysts under the influence of head–foot protein extract of native O. hupensis implied not only its ability to improve in vitro culture conditions for intramolluscan stages, it may also represent a priming result with respect to the identification and characterization of factors involved in the parasite–host interplay between S. japonicum and O. hupensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Basch PF (1976) Intermediate host specificity in Schistosoma mansoni. Exp Parasitol 39:150–169

    Article  PubMed  CAS  Google Scholar 

  • Bi XY, Zhou SL, Li Y (1992) Preliminary observation on the growth of cercarial embryo of Schistosoma japonicum cultivated in vitro. Chin J Schisto Control 4:18–21

    Google Scholar 

  • Boyle JP, Yoshino TP (2005) Serotonin-induced muscular activity in Schistosoma mansoni larval stages: importance of 5-HT transport and role in daughter sporocyst production. J Parasitol 91:542–550

    Article  PubMed  CAS  Google Scholar 

  • Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25:288–289

    Article  PubMed  CAS  Google Scholar 

  • Castillo MG, Yoshino TP (2002) Carbohydrate inhibition of Biomphalaria glabrata embryonic (Bge) cell adhesion to primary sporocysts of Schistosoma mansoni. Parasitology 125:513–525

    PubMed  CAS  Google Scholar 

  • Chen P, Chen Q, Yuan Y, Chen SL (2009) Cloning and sequence analysis of Schistosoma japonicum mitochondrial cytochrome c oxidase subunit I (CO I) gene. J South-Central University Nationalities (Natur Sci Ed) 28:36–40

    Google Scholar 

  • Cheng GF, Feng XG, Lin JJ, Shi YJ, Lu K, Zhou YC, Cai YM (2005) Analysis of membrane protein from egg, schistosomulum, adult male and female worm of Schistosoma japonicum by two dimensional electrophoresis. Acta Zoologica Sinica 51:171–177

    CAS  Google Scholar 

  • Coppin JF, Lefebvre C, Caby S, Cocquerelle C, Vicogne J, Coustau C, Dissous C (2003) Gene expression changes in Schistosoma mansoni sporocysts induced by Biomphalaria glabrata embryonic cells. Parasitol Res 89:113–119

    Article  PubMed  Google Scholar 

  • Coustau C, Yoshino TP (2000) Flukes without snails: advances in the in vitro cultivation of intramolluscan stages of trematodes. Exp Parasitol 94:62–66

    Article  PubMed  CAS  Google Scholar 

  • Coustau C, Ataev G, Jourdane J, Yoshino TP (1997) Schistosoma japonicum: in vitro cultivation of miracidium to daughter sporocyst using a Biomphalaria glabrata embryonic cell line. Exp Parasitol 87:77–87

    Article  PubMed  CAS  Google Scholar 

  • Coustau C, Mitta G, Dissous C, Guillou F, Galinier R, Allienne JF, Modat S (2003) Schistosoma mansoni and Echinostoma caproni excretory–secretory products differentially affect gene expression in Biomphalaria glabrata embryonic cells. Parasitology 127:533–542

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Mogadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlow ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Dinguirard N, Yoshino TP (2006) Potential role of a CD36-like class B scavenger receptor in the binding of modified low-density lipoprotein (acLDL) to the tegumental surface of Schistosoma mansoni sporocysts. Mol Biochem Parasitol 146:219–230

    Article  PubMed  CAS  Google Scholar 

  • Duclermortier P, Lardans V, Serra E, Trottein F, Dissous C (1999) Biomphalaria glabrata embryonic cells express a protein with a domain homologous to the lectin domain of mammalian selectins. Parasitol Res 85:481–486

    Article  PubMed  CAS  Google Scholar 

  • Giordano E, Peluso I, Senger S, Furia M (1999) Minifly, a Drosophila gene required for ribosome biogenesis. J Cell Biol 144:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Gu BW, Fan JM, Bessler M, Mason PJ (2011) Accelerated hematopoietic stem cell aging in a mouse model of dyskeratosis congenita responds to antioxidant treatment. Aging Cell 10:338–348

    Article  PubMed  CAS  Google Scholar 

  • Hansen EL (1976) In: Maramorosch K (ed) A cell line from embryos of Biomphalaria glabrata (Pulmonata): establishment and characteristics. Invertebrate tissue culture: research applications. Academic, New York, pp 75–99

    Google Scholar 

  • He YX, Guo YH, Ni CH, Xia F, Liu HX, Yu QF, Hu YQ (1990) Studies on the atrain differences of Schistosoma japonicum in the mainland of China I. Compatibility between schistosomes and the snail hosts. Chin J Parasitol Parasit Dis 8:92–95

    CAS  Google Scholar 

  • Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19:32–38

    Article  PubMed  CAS  Google Scholar 

  • Heiss NS, Bachner D, Salowsky R, Kolb A, Kioschis P, Poustka A (2000) Gene structure and expression of the mouse dyskeratosis congenita gene, dkc1. Genomics 67:153–163

    Article  PubMed  CAS  Google Scholar 

  • Ho YH (1963) On the host specificity of Schistosoma japonicum. Chin Med J 82:405–414

    PubMed  CAS  Google Scholar 

  • Li H, Tao Y, Dai J, Qu G, Wang W, Xing Y, Li Y, Liang Y (2010) Effect of multiple doses of dihydroarteminisin and combination with praziquantel against Schistosoma japonicum in experimental mice. Chin J Schisto Control 22:534–538

    Google Scholar 

  • Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Zhou SL, Li Y (1994) Study on development of sporocyst in artificially infected Schistosoma japonicum in Oncomelania hupensis. Chin J Schisto Control 6:27–29

    Google Scholar 

  • Huang XB, Xia PF, Yang LH, Jiang Y (2002) Susceptibility of Oncomelania hupensis from different areas infected with Schistosoma japonicum and generation attack ability to rabbits. Chin J Schisto Control 14:35–37

    Google Scholar 

  • Humphries JE, Yoshino TP (2006) Schistosoma mansoni excretory–secretory products stimulate a p38 signalling pathway in Biomphalaria glabrata embryonic cells. Int J Parasitol 36:37–46

    Article  PubMed  CAS  Google Scholar 

  • Ivanchenko MG, Lerner JP, McCormick RS, Toumadje A, Allen B, Fischer K, Hedstrom O, Helmrich A, Barnes DW, Bayne CJ (1999) Continuous in vitro propagation and differentiation of cultures of the intramolluscan stages of the human parasite Schistosoma mansoni. Proc Natl Acad Sci U S A 96:4965–4970

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Middleton K, Yoon HJ, Fouquet C, Carbon J (1993) An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol Cell Biol 13:4884–4893

    PubMed  CAS  Google Scholar 

  • Lardans V, Coppin JF, Vicogne J, Aroca E, Delcroix M, Dissous C (2001) Characterization of an insulin receptor-related receptor in Biomphalaria glabrata embryonic cells. Biochim Biophys Acta 1510:321–329

    Article  PubMed  CAS  Google Scholar 

  • Manger P, Li J, Christensen BM, Yoshino TP (1996) Biogenic monoamines in the freshwater snail, Biomphalaria glabrata: influence of infection by the human blood fluke, Schistosoma mansoni. Comp Biochem Physiol A Physiol 114:227–234

    Article  PubMed  CAS  Google Scholar 

  • Mei BS, Zhou SL (1989) Effects of nutritive factors on Schistosoma japonicum miracidial transformation and mother sporocyst culture in vitro. Acta Hydrobiologica Sinica 13:326–333

    Google Scholar 

  • Meier UT, Blobel G (1994) NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Biol 127:1505–1514

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402:551–555

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Jiang MS, Zhong QP, Gui JF, Dong HF (2003) Preliminary study on primary culture of cells from Oncomelania hupensis. Chin J Parasitol Parasit Dis 21:176–178

    Google Scholar 

  • Phillips B, Billin AN, Cadwell C, Buchholz R, Erickson C, Merriam JR, Carbon J, Poole SJ (1998) The Nop60B gene of Drosophila encodes an essential nucleolar protein that functions in yeast. Mol Gen Genet 260:20–29

    Article  PubMed  CAS  Google Scholar 

  • Ren CX, Sheng XL (2003) Laboratory observation on the susceptibility of oncomelania hupensis to schistosoma japonicum in different districts. Chin J Vector Bio & Control 14:206–207

    Google Scholar 

  • Ross AG, Bartley PB, Sleigh AC, Olds GR, Li Y, Williams GM, McManus DP (2002) Schistosomiasis. N Engl J Med 346:1212–1220

    Article  PubMed  Google Scholar 

  • Ye Q, Zhu JY, Zhong QP, Jiang MS, Dong HF (2007) Primary culture of the cells from Oncomelania hupensis liver. Chin J Parasitol Parasit Dis 25:478–482

    Google Scholar 

  • Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E, Ruggero D (2006) Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312:902–906

    Article  PubMed  CAS  Google Scholar 

  • Yoshino TP, Laursen JR (1995) Production of Schistosoma mansoni daughter sporocysts from mother sporocysts maintained in synxenic culture with Biomphalaria glabrata embryonic (Bge) cells. J Parasitol 81:714–722

    Article  PubMed  CAS  Google Scholar 

  • Yoshino TP, Coustau C, Modat S, Castillo MG (1999) The glabrata embryonic (Bge) molluscan cell line: establishment of an in vitro cellular model for the study of snail host–parasite interactions. Malacologia 41:331–343

    Google Scholar 

  • Yoshino TP, Boyle JP, Humphries JE (2001) Receptor–ligand interactions and cellular signalling at the host–parasite interface. Parasitology 123(Suppl):S143–S157

    PubMed  Google Scholar 

  • Yoshino TP, Dinguirard N, Mourão Mde M (2010) In vitro manipulation of gene expression in larval Schistosoma: a model for postgenomic approaches in trematoda. Parasitology 137:463–483

    Article  PubMed  CAS  Google Scholar 

  • Zhou SL (1958) A study on the development of the larval stage of Schistosoma japonicum in Oncomelania hupensis. Acta Microbiologica Sinica 6:110–126

    Google Scholar 

  • Zhou XN (2005) Science on Oncomelania snail. Science, Beijing

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Rong Liu and senior laboratory technician Ying Li in our laboratory, Prof. Pin Nie and his colleagues in the State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China, for their help. This work was supported by the National Natural Science Foundation of China (30771876 and 31000956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Fen Dong.

Additional information

Jun Yong Zhu and Qing Ye contributed to this paper equally and should be considered as the co-first authors.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig 1

Coomassie Brilliant Blue staining of an SDS-PAGE with different types of protein extract from snails. Lane 1 head–foot protein extract of snails from Hunan; lane 2 head–foot protein extract of snails from Hubei; lane 3 gland protein extract of snails from Hunan; lane 4 isotonic NaCl; M prestained protein ladder (Fermentas #SM0671); 22.5 μg protein of each group was loaded onto a polyacrylamide gel (10%). Electrophoresis was performed at room temperature at 50 V for 30 min and then 200 V for 1.5 h, followed by Coomassie Brilliant Blue staining. (JPEG 32 kb)

High resolution image (TIFF 225 kb)

Supplementary Table 1

Gene ontology classification of differentially expressed transcripts in S. japonicum mother sporocysts cultured with and without O. hupensis head–foot protein extract (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J.Y., Ye, Q., Zhao, Q.P. et al. Effects of protein extract from head–foot tissue of Oncomelania hupensis on the growth and gene expression of mother sporocysts of Schistosoma japonicum . Parasitol Res 110, 721–731 (2012). https://doi.org/10.1007/s00436-011-2548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2548-4

Keywords

Navigation