Skip to main content

Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae)

Abstract

The leaf extract of Acalypha alnifolia with different solvents — hexane, chloroform, ethyl acetate, acetone and methanol — were tested for larvicidal activity against three important mosquitoes such as malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus. The medicinal plants were collected from the area around Kallar Hills near the Western Ghats, Coimbatore, India. A. alnifolia plant was washed with tap water and shade dried at room temperature. The dried leaves were powdered mechanically using commercial electrical stainless steel blender. The powder 800 g of the leaf material was extract with 2.5 litre of various each organic solvents such as hexane, chloroform, ethyl acetate, acetone, methanol for 8 h using Soxhlet apparatus, and filtered. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The yield of extracts was hexane (8.64 g), chloroform (10.74 g), ethyl acetate (9.14 g), acetone (10.02 g), and methanol (11.43 g). One gram of the each plant residue was dissolved separately in 100 ml of acetone (stock solution) from which different concentrations, i.e., 50, 150, 250, 350 and 450 ppm, was prepared. The hexane, chloroform, ethyl acetate, acetone was moderate considerable mortality; however, the highest larval mortality was methanolic extract observed in three mosquito vectors. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The early fourth-instar larvae of A. stephensi had values of LC50 = 197.37, 178.75, 164.34, 149.90 and 125.73 ppm and LC90 = 477.60, 459.21, 435.07, 416.20 and 395.50 ppm, respectively. The A. aegypti had values of LC50 = 202.15, 182.58, 160.35, 146.07 and 128.55 ppm and LC90 = 476.57, 460.83, 440.78, 415.38 and 381.67 ppm, respectively. The C. quinquefasciatus had values of LC50 = 198.79, 172.48, 151.06, 140.69 and 127.98 ppm and LC90 = 458.73, 430.66, 418.78, 408.83 and 386.26 ppm, respectively. The results of the leaf extract of A. alnifloia are promising as good larvicidal activity against the mosquito vector, A. stephensi, A. aegypti, C. quinquefasciatus. Therefore, this study provides first report on the larvicidal activities against three species of mosquito vectors of this plant extracts from Southern India.

 

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abbot WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–66

    Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    PubMed  Article  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    PubMed  Article  Google Scholar 

  • Ascher KRS, Schmutterer H, Zebitz CPW, Naqvi SNH (1995) The Persian lilac or chinaberry tree: Melia azedarach L. In: Schmutterer H (ed) The Neem Tree: source of unique natural products for integrated pest management, medicine, industry and other purposes. Weinheim, VCH, pp 605–642

    Google Scholar 

  • Babu R, Murugan K (2000) Larvicidal effect of resinous exudate from the tender leaves of Azadirachta indica. Neem Newsletter 17(3)

  • Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103:223–229

    PubMed  Article  CAS  Google Scholar 

  • Balakrishnan VP, Prema Ravindran KC, Philip Robinson J (2009) Ethnobotanical studies among villagers from Dharapuram Taluk, Tamil Nadu, India. Global J Pharmacol 3(1):8–14

    Google Scholar 

  • Bisby FA, Roskov YR, Ruggiero MA, Orrell TM, Paglinawan LE, Brewer PW, Bailly N, Van Hertum J eds (2007) Species 2000 & ITIS Catalogue of Life: 2007 Annual Checklist. Species 2000: Reading, U.K. The International Plant Names Index. Accessed Jan. 19, 2007

  • Breman JG, Martin AS, Mills A (2004) Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71(2):1–15

    PubMed  Google Scholar 

  • Burfield T, Reekie SL (2005) Mosquitoes, malaria and essential oils. Int J Aroma 15:30–41

    Article  CAS  Google Scholar 

  • David JP, Rey D, Pautou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18

    PubMed  Article  CAS  Google Scholar 

  • Das PK, Pani SP, Krishnamoorthy K (2002) Prospects of elimination of lymphatic filariasis in India. ICMR Bull 32:41–54

    Google Scholar 

  • Dua VK, Pandey AC, Alam ME, Dash AP (2006) Larvicidal activity of Hibiscus abelmoschus Linn. (Malvaceae) against mosquitoes. J Am Mosq Control Assoc 22(1):155–157

    PubMed  Article  Google Scholar 

  • Filho ECO, Paumgartten FJ (2000) Toxicity of Euphorbia milii latex and niclosamide to snails and nontarget aquatic species. Ecotoxicol Environ Saf 46(3):342–350

    Article  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–78

    Google Scholar 

  • Garg JM (2009) Information |Description = {{en|1 = ''Acalypha capitata'' Willd. (syn. “Acalypha alnifolia” Klein ex Willd.) in Keesara, Rangareddy district, Andhra Pradesh, India

  • Georghiou GP, Lagunes-tejeda A (1991) The occurrence of resistance to pesticides in Arthropods. FAO, Rome, p 318

    Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008a) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292

    PubMed  Article  CAS  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008b) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102:289–92

    PubMed  Article  CAS  Google Scholar 

  • Govindarajan M (2009) Bioefficacy of Cassia fistula Linn. (Leguminosae) leaf extract against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 13(2):99–103

    PubMed  CAS  Google Scholar 

  • Govindarajan M (2010) Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14:107–111

    PubMed  CAS  Google Scholar 

  • Gunasekaran K, Vijayakumar T, Kalyanasundaram M (2009) Larvicidal and emergence inhibitory activities of NeemAzal T/S 1.2 per cent EC against vectors of malaria, filariasis and dengue. Indian J Med Res 130:138–145

    PubMed  CAS  Google Scholar 

  • Hahn CS, French OG, Foley P, Martin EN, Taylor RP (2001) Bispecific monoclonal antibodies mediate binding of dengue virus to erythrocytes in a monkey model of passive viremia. J Immunol 66(2):1057–1065

    Google Scholar 

  • Howard AF, Adongo EA, Hassanali A, Omlin FX, Wanjoya A, Zhou G et al (2009) Laboratory evaluation of the aqueous extract of Azadirachta indica (neem) wood chippings on Anopheles gambiae s.s. (Diptera: Culicidae) mosquitoes. J Med Entomol 46(1):107–114

    PubMed  Article  Google Scholar 

  • Jang YS, Kim MK, Ahn YJ, Lee HS (2002) Larvicidal activity of Brazilian plants againt Aedes aegypti and Culex pipiens pallens (Diptera:Culicidae). Agric Chem Biotechnol 45(3):131–134

    Google Scholar 

  • Kalyanasundaram M, Das PK (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian J Med Res 82:19–23

    PubMed  CAS  Google Scholar 

  • Kamalakannan S, Murugan K, Barnard R (2011) Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae). J Asia-Pacific Entomol 14:41–45

    Article  Google Scholar 

  • Kannathasan K, Senthilkumar A, Chandrasekaran M, Venkatesalu V (2007) Differential larvicidal efficacy of four species of Vitex against Culex quinquefasciatus larvae. Parasitol Res 101(6):1721–1723

    PubMed  Article  Google Scholar 

  • Katade SR, Pawar PV, Tungikar VB, Tambe AS, Kalal KM, Wakharkar RD, Deshpande NR (2006a) Larvicidal activity of bis(2-ethylhexyl) benzene-1,2-dicarboxylate from Sterculia guttata seeds against two mosquito species. Chem Biodivers 3(1):49–53

    PubMed  Article  CAS  Google Scholar 

  • Katade SR, Pawar PV, Wakharkar RD, Deshpande NR (2006b) Sterculia guttata seeds extractives—an effective mosquito larvicide. Indian J Exp Biol 44(8):662–665

    PubMed  Google Scholar 

  • Kuppusamy C, Murugan K (2006) Mosquitocidal effect of ethanolic extracts of Andrographis paniculata Nees on filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). In: International Conference on Biodiversity of Insects: Challenging Issues in Management and Conservation, 30 January–3 February 2006, Tamil Nadu, India, p 194

  • Kovendan K, Murugan K, Thiyagarajan P, Naresh Kumar, Abirami D, Asaikkutti A (2009) Impact of climate change on the filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). In: International Congress of Global Warming on Biodiversity of Insects: Management and Conservation, 9–12 February 2009, Tamil Nadu, India, p 62

  • Kovendan K, Murugan K (2011) Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv in Environ Biol 5(2):335–344

    Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2368-6

  • Lima MG, Maia IC, Sousa BD, Morais SM, Freitas SM (2006) Effect of stalk and leaf extracts from Euphorbiaceae species on Aedes aegypti (Diptera, Culicidae) larvae. Rev Inst Med Trop Sao Paulo 48(4):211–214

    PubMed  Article  Google Scholar 

  • Maurya P, Mohan L, Sharma P, Batabyal L, Srivastava CN (2007) Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomol Res 37:153–156

    Article  Google Scholar 

  • Mehra BK, Hiradhar PK (2002) Cuscuta hyalina Roth., an insect development inhibitor against common house mosquito Culex quinquefasciatus Say. J Environ Biol 23(3):335–339

    PubMed  Google Scholar 

  • Michael E, Bundy DA, Grenfell BT (1996) Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 112(4):409–428

    PubMed  Article  Google Scholar 

  • Mittal PK, Adak T, Subbarao SK (2005) Inheritance of resistance to Bacillus sphaericus toxins in a laboratory selected strain of An. stephensi (Diptera: Culicidae) and its response to Bacillus thuringiensis var. israelensis. Curr Sci 89:442–443

    Google Scholar 

  • Morais SM, Cavalcanti ES, Bertini LM, Oliveira CL, Rodrigues JR, Cardoso JH (2006) Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc 22(1):161-164

    Google Scholar 

  • Mourya DT, Iikal MA, Mishra AC, Jacob PG, Pant U, Ramanujam S, Mavale MS, Bhat HR, Dhanda V (1989) Isolation of Japanese encephalitis virus from mosquitoes collected in Karnataka state, India from 1985 to 1987. Trans R Soc Trop Med Hyg 83:550–552

    PubMed  Article  CAS  Google Scholar 

  • Mullai K, Jebanesan A, Pushpanathan T (2008) Effect of bioactive fractions of Citrullus vulgaris Schrad. leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res 102(5):951–955

    PubMed  Article  CAS  Google Scholar 

  • Murugan K, Jeyabalan D (1999) Effect of certain plant extracts against the mosquito, Anopheles stephensi Liston. Curr Sci 76:631–633

    Google Scholar 

  • Murugan K, Thangamathi P, Jeyabalan D (2002) Interactive effect of botanical and Bacillus thuringiensis subsp. israelensis on Culex quinquefasciatus Say. J Sci Ind Res 61:1068–1076

    Google Scholar 

  • Muthukrishnan J, Puspalatha E (2001) Effects of plant extracts on fecundity and fertility of mosquitoes. J Appl Entomol 125:31–35

    Article  Google Scholar 

  • Nirmal Sharma JS, Qadry B, Subramanium T, Verghese SJ, Rahman SK, Sharma, Jalees S (1998) Larvicidal activity of Gliricidia sepium against mosquito larvae of Anopheles stephansi, Aedes aegypti and Culex quinquefasciatus. Pharmaceutical Biol 36(1):3–7

    Article  Google Scholar 

  • Pandian RS, Dwarkanath SK, Martin P (1989) Repellent activity of herbal smoke on the biting activity of mosquitoes. J Ecobiol 1:287–289

    Google Scholar 

  • Pastorino B, Bessaud M, Grandadam M, Murri S, Tolou HJ, Peyrefitte CN (2005) Development of a TaqMan RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J Virol Methods 124(1–2):65–71

    PubMed  Article  CAS  Google Scholar 

  • Pax, Ferdinand Albin, Hoffmann, Käthe (1924) Euphorbiaceae–Crotonoideae–Acalypheae–Acalyphinae. In: Engler, Adolf: Das Pflanzenreich Series IV '147.XVI (85):1–231

  • Peng Z, Beckett AN, Engler RJ, Hoffman DR, Ott NL, Simons FER (2004) Immune responses to mosquito saliva in 14 individuals with acute systemic allergic reactions to mosquito bites. J Allergy Clin Immunol 114:1189–1194

    PubMed  Article  CAS  Google Scholar 

  • Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96:1749–1757

    PubMed  Article  CAS  Google Scholar 

  • Perich MJ, Wells C, Bertsch W, Tredway KE (1995) Isolation of the insecticidal components of Tagetes minuta (Compositae) against mosquito larvae and adults. J Am Mosq Control Assoc 11(3):307–310

    PubMed  CAS  Google Scholar 

  • Rajasekariah GR, Parab PB, Chandrashekar R, Deshpande L, Subrahmanyan D (1991) Pattern of Wuchereria bancrofti microfilaraemia in young and adolescent school children in Bessein, India, an endemic area for lymphatic filariasis. Ann Trop Med Parasitol 85(6):663–665

    PubMed  CAS  Google Scholar 

  • Ramaiah KD, Das PK, Michael E, Guyatt H (2000) The economic burden of lymphatic filariasis in India. Parasitol Today 16(6):251–253

    PubMed  Article  CAS  Google Scholar 

  • Rajkumar S, Jebanesan A (2004) Mosquitocidal activities of octasane from Moschosma polystachyum Linn. (Lamiaceae). J Ethnopharm 90:87–89

    Article  CAS  Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104(2):337–340

    PubMed  Article  CAS  Google Scholar 

  • Scott TW, Chow E, Strickman D, Kittayapong P, Writz RA, Lorenz LH, Edman JD (1993) Blood feeding pattern of Aedes aegypti (Diptera: Culicidae) collect in a rural Thai village. J Med Entomol 30:922–927

    PubMed  CAS  Google Scholar 

  • Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 104:237–244

    PubMed  Article  CAS  Google Scholar 

  • Singh RK, Dhiman RC, Mittal PK (2006) Mosquito larvicidal properties of Momordica charantia Linn (Family: Cucurbitaceae). J Vect Borne Dis 43:88–91

    CAS  Google Scholar 

  • Singh RK, Dhiman RC, Mittal PK (2007) Studies on mosquito larvicidal properties of Eucalyptus citriodora Hook (family—Myrtaceae). J Commun Dis 39(4):233–236

    PubMed  CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2005) Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector. J Environ Biol 26(4):657–660

    PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2009) Anti-juvenile activity of Azadirachta indica extract on the development and morphometry of filaria vector, Culex quinquefasciatus (Diptera: Culicidae) Say. Parasitol Res 105(5):1193–1203

    PubMed  Article  Google Scholar 

  • Sharma SK, Upadhyay AK, Haque MA, Tyagi PK, Raghavendra K, Dash AP (2010) Wash-resistance and field evaluation of alphacypermethrin treated long-lasting insecticidal net (Interceptor) against malaria vectors Anopheles culicifacies and Anopheles fluviatilis in a tribal area of Orissa, India. Acta Trop 116(1):24–30

    PubMed  Article  CAS  Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434(7030):214–217

    PubMed  Article  CAS  Google Scholar 

  • Terranella A, Eigiege A, Gontor I, Dagwa P, Damishi S, Miri E, Blackburn B, McFarland D, Zingeser J, Jinadu MY, Richards FO (2006) Urban lymphatic filariasis in central Nigeria. Ann Trop Med Parasitol 100(2):163–172

    PubMed  Article  CAS  Google Scholar 

  • Thomas TG, Rao S, Lal S (2004) Mosquito larvicidal properties of an indigenous plant, Ipomoea cairica Linn. Jap J Infect Dis 57:176–177

    Google Scholar 

  • Vahitha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. and Acacia ferruginea D.C. against Culex quinquefasciatus Say. Biores Technol 82:203–204

    Article  CAS  Google Scholar 

  • Venkatachalam MR, Jebanesan A (2001) Larvicidal activity of Hydrocotyl javanica Thumb. (Apiaceae) extract against Culex quinquefasciatus. J Exp Zool India 4(1):99–101

    Google Scholar 

  • Vogel A (1978) Text book of practical organic chemistry. Society and Longman, London, p 1369

    Google Scholar 

  • Wandscheer CB, Duque JE, da Silva MAN, Fukuyama Y, Wohlke JL, Adelmann J, Fontana JD (2004) Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti. Toxicon 44:829–835

    PubMed  Article  CAS  Google Scholar 

  • Wattanachai P, Tintanon B (1999) Resistance of Aedes aegypti to chemical compounds in aerosol insecticide products in different areas of Bangkok, Thailand. J Commun Dis 25:188–191

    Google Scholar 

  • WHO (1992) Vector resistance to pesticides. Fifteenth Report of the WHO Expert Committee on Vector Biology and Control. WHO Tech Rep Ser 818:1–62

    Google Scholar 

  • Yadav R, Srivastava VK, Chandra R, Singh A (2002a) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34(4):264–269

    PubMed  Google Scholar 

  • Yadav R, Srivastava VK, Chandra R, Singh A (2002b) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34(4):264–269

    PubMed  Google Scholar 

  • Zipcodezoo (em inglês). Acalypha alnifolia. Página visitada em 20 de novembro de 2010

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology (DST), New Delhi, India, and Tamil Nadu State Council for Science and Technology (TNSCST), Chennai, Tamil Nadu, for providing financial support for the present work. The authors are grateful to the Dr. K. Sasikala, Professor and Head, Department of Zoology, Bharathiar University for the laboratory facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kovendan, K., Murugan, K. & Vincent, S. Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110, 571–581 (2012). https://doi.org/10.1007/s00436-011-2525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2525-y

Keywords

  • Malaria
  • Leaf Extract
  • Lymphatic Filariasis
  • Mosquito Vector
  • Larvicidal Activity