Skip to main content

Advertisement

Log in

Effects of platelet-activating factor on the interaction of Trypanosoma cruzi with Rhodnius prolixus

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

We investigated the effects of platelet-activating factor (PAF) on the interaction of Trypanosoma cruzi with Rhodnius prolixus. The parasites (epimastigotes) were treated with PAF and/or WEB 2086 (PAF antagonist) for 1 h prior to the interaction experiments. PAF stimulated both in vivo and ex vivo interactions between T. cruzi and R. prolixus while WEB 2086 abrogated these effects. PAF-treated epimastigotes also showed an increase in surface negativity and in the amount of surface sialic acid. Neither of these effects was observed when the epimastigotes were treated with neuraminidase following PAF treatment. In the ex vivo interaction experiments, the number of epimastigotes bound to the midguts of the insects was reduced when the epimastigotes had been treated with neuraminidase. We conclude that PAF modulates the interaction of T. cruzi with R. prolixus by altering the amount of sialyl residues at the surface of the parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves CR, Albuquerque-Cunha JM, Mello CB, Garcia ES, Nogueira NF, Bourguingnon SC, de Souza W, Azambuja P, Gonzalez MS (2007) Trypanosoma cruzi: attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus. Exp Parasitol 116:44–52

    Article  PubMed  CAS  Google Scholar 

  • Amino R, Serrano AA, Morita OM, Pereira-Chioccola VL, Schenkman S (1995) A sialidase activity in the midgut of the insect Triatoma infestans is responsible for the low levels of sialic acid in Trypanosoma cruzi growing in the insect vector. Glycobiol 5:625–631

    Article  CAS  Google Scholar 

  • Ashton AW, Mukherjee S, Nagajyothi F, Huang H, Braunstein VL, Desruisseaux MS, Factor SM, Lopez L, Berman JW, Wittner M, Scherer PE, Capra V, Coffman TM, Serhan CN, Gotlinger K, Wu KK, Weiss LM, Tanowitz HB (2007) Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. J Exp Med 204:929–940

    Article  PubMed  CAS  Google Scholar 

  • Braz GR, Abreu L, Masuda H, Oliveira PL (2001) Heme biosynthesis and oogenesis in the blood-sucking bug, Rhodnius prolixus. Insect Biochem Mol Biol 31:31–40

    Article  Google Scholar 

  • Cabral MO, Azambuja P, Gottlieb OR, Kleffmann T, Garcia ES, Schaub GA (2001) Burchellin: effect on Triatoma infestans and on Trypanosoma cruzi within this vector. Parasitol Res 87:730–735

    Article  PubMed  CAS  Google Scholar 

  • Camargo EP (1964) Growth and differentiation in Trypanosoma cruzi I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop 6:93–100

    CAS  Google Scholar 

  • Carod-Artal FJ, Gascon J (2010) Chagas disease and stroke. Lancet Neurol 9:533–542

    Article  PubMed  Google Scholar 

  • Castro DP, Figueiredo MB, Genta FA, Ribeiro IM, Tomassini TCB, Azambuja P, Garcia ES (2009) Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities. J Insect Physiol 55:532–537

    Article  PubMed  CAS  Google Scholar 

  • Chagas C (1909) Nova tripanozomiaze humana. Mem Inst Oswaldo Cruz 1:11–72

    Article  Google Scholar 

  • Dugan AS, Eash S, Atwood WJ (2005) An N-linked glycoprotein with (2, 3)-linked sialic acid is a receptor for BK Virus. J Virol 79:14442–14445

    Article  PubMed  CAS  Google Scholar 

  • Dutra PML, Rodrigues CO, Jesus JB, Lopes AH, Souto-Padrón T, Meyer-Fernandes JR (1998) A novel ecto-phosphatase activity of Herpetomonas muscarum muscarum inhibited by platelet-activating factor. Biochem Biophys Res Commun 253:164–169

    Article  PubMed  CAS  Google Scholar 

  • Edwards LJ, Constantinescu CS (2009) Platelet activating factor/platelet activating factor receptor pathway as a potential therapeutic target in autoimmune diseases. Inflamm Allergy Drug Targets 8:182–190

    PubMed  CAS  Google Scholar 

  • Eyster KM (2007) The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. Adv Physiol Educ 31:5–16

    Article  PubMed  Google Scholar 

  • Figueiredo MB, Garcia ES, Azambuja P (2008a) Blockades of phospholipase A2 and platelet-activating factor receptors reduce the hemocyte phagocytosis in Rhodnius prolixus: in vitro experiments. J Insect Physiol 54:344–350

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo MB, Genta FA, Garcia ES, Azambuja P (2008b) Lipid mediators and vector infection: Trypanosoma rangeli inhibits Rhodnius prolixus hemocyte phagocytosis by modulation of phospholipase A2 and PAF-acetylhydrolase activities. J Insect Physiol 54:1528–1537

    Article  PubMed  CAS  Google Scholar 

  • Garcia ES, Azambuja P (1991) Development and interactions of Trypanosoma cruzi within the insect vector. Parasitol Today 8:240–244

    Article  Google Scholar 

  • Golodne DM, Monteiro RQ, Graça-Souza AV, Silva-Neto MAC, Atella GC (2003) Lysophosphatidylcholine acts as an anti-hemostatic molecule in the saliva of the blood-sucking bug Rhodnius prolixus. J Biol Chem 278:27766–27771

    Article  PubMed  CAS  Google Scholar 

  • Gomes MT, Monteiro RQ, Grillo LA, Leite-Lopes F, Stroeder H, Ferreira-Pereira A, Alviano CS, Barreto-Bergter E, Faria-Neto HC, Silva NL Cunha e, Almeida IC, Soares RM, Lopes AH (2006) Platelet-activating factor-like activity isolated from Trypanosoma cruzi. Int J Parasitol 36:165–173

    Article  PubMed  CAS  Google Scholar 

  • Honda Z, Ishii S, Shimizu T (2002) Platelet-activating factor receptor. J Biochem 131:773–779

    PubMed  CAS  Google Scholar 

  • Izumi T, Shimizu T (1995) Platelet-activating factor: gene expression and signal transduction. Biochim Biophys Acta 1259:317–333

    PubMed  Google Scholar 

  • Kasperska-Zajac A, Brzoza Z, Rogala B (2008) Platelet-activating factor (PAF): a review of its role in asthma and clinical efficacy of PAF antagonists in the disease therapy. Recent Pathol Inflamm Allergy Drug Discov 2:72–76

    Article  CAS  Google Scholar 

  • Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in Triatominae. Parasitol Today 16:381–387

    Article  PubMed  CAS  Google Scholar 

  • Lopes AH, Dutra PML, Rodrigues CO, Soares MJ, Angluster J, Cordeiro RSB (1997) Effect of platelet-activating factor on the process of cellular differentiation of Herpetomonas muscarum muscarum. J Eukaryot Microbiol 44:321–325

    Article  PubMed  CAS  Google Scholar 

  • Machado EMM, Azambuja P, Garcia ES (2006) WEB 2086, a platelet-activating factor antagonist, inhibits prophenoloxidase-activating system and hemocyte microaggregation reactions induced by Trypanosoma rangeli infection in Rhodnius prolixus hemolymph. J Insect Physiol 52:685–692

    Article  PubMed  CAS  Google Scholar 

  • Maslow DE, Harlos JP (1981) The effect of neuraminidase- and ribonuclease-susceptible surface anionic groups on the aggregation of embryonic chick neural retina cells. J Cell Sci 51:229–240

    PubMed  CAS  Google Scholar 

  • Mesquita RD, Carneiro AB, Bafica A, Gazos-Lopes F, Takiya CM, Souto-Padrón T, Vieira DP, Ferreira-Pereira A, Almeida IC, Figueiredo RT, Porto BN, Bozza MT, Graça-Souza AV, Lopes AH, Atella GC, Silva-Neto MAC (2008) Trypanosoma cruzi infection is enhanced by vector saliva through immunosuppressant mechanisms mediated by lysophosphatidylcholine. Infect Immun 76:5543–5552

    Article  PubMed  CAS  Google Scholar 

  • Pereira ME, Andrade AF, Ribeiro JM (1981) Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211:597–600

    Article  PubMed  CAS  Google Scholar 

  • Previato JO, Andrade AF, Pessolani MC, Mendonça-Previato L (1985) Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route. Mol Biochem Parasitol 16:85–96

    Article  PubMed  CAS  Google Scholar 

  • Previato JO, Andrade AFB, Vermelho A, Firmino JC, Mendonça-Previato L (1990) Evidence for N-glycolylneuraminic acid incorporation by Trypanosoma cruzi from infected animals. Mem Inst Oswaldo Cruz 85:38–39

    Google Scholar 

  • Previato JO, Jones C, Gonçalves LPB, Wait R, Travassos LR, Mendonça-Previato L (1994) O-Glycosidically linked N-acetylglucosamine-bound oligosaccharides from glycoproteins of Trypanosoma cruzi. Biochem J 301:151–159

    PubMed  CAS  Google Scholar 

  • Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402

    Article  PubMed  Google Scholar 

  • Rodrigues CO, Dutra PML, Souto-Padrón T, Cordeiro RSB, Lopes AH (1996) Effect of platelet-activating factor on cell differentiation of Trypanosoma cruzi. Biochem Biophys Res Commun 223:735–740

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues CO, Dutra PML, Barros FS, Souto-Padrón T, Meyer-Fernandes JR, Lopes AH (1999) Platelet-activating factor induction of secreted phosphatase activity in Trypanosoma cruzi. Biochem Biophys Res Commun 266:36–42

    Article  PubMed  CAS  Google Scholar 

  • Rosa MSS, Vieira RB, Pereira AF, Dutra PML, Lopes AH (2001) Platelet-activating factor (PAF) modulates peritoneal mouse macrophage infection by Leishmania amazonensis. Curr Microbiol 43:33–37

    Article  PubMed  CAS  Google Scholar 

  • Schaub GA (2009) Interactions of trypanosomatids and triatomines. In: Simpson SJ, Casas J (eds) Advances in insect physiology, vol 37. Elsevier Ltd., Academic Press, London, pp 177–242

    Google Scholar 

  • Schenkman S, Jiang MS, Hart GW, Nussenzweig V (1991) A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 65:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Silva-Filho FC, Santos ABS, de Carvalho TM, de Souza W (1987) Surface charge of resident, elicited and activated mouse peritoneal macrophages. J Leukoc Biol 41:143–149

    PubMed  CAS  Google Scholar 

  • Soares RM, Alviano DS, Angluster J, Alviano CS, Travassos LR (2000) Identification of sialic acids on the cell surface of Candida albicans. Biochim Biophys Acta 1474:262–268

    PubMed  CAS  Google Scholar 

  • Souto-Padrón T (2002) The surface charge of trypanosomatids. An Acad Bras Cienc 74:649–675

    Article  PubMed  Google Scholar 

  • Souto-Padrón T, De Souza W (1986) The surface charge of Trypanosoma cruzi: analysis using cell electrophoresis, lectins and ultrastructural cytochemistry. J Submicrosc Cytol 18:701–709

    PubMed  Google Scholar 

  • Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, Reed S, Tarleton R (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Tyler KM, Engman DM (2001) The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31:472–481

    Article  PubMed  CAS  Google Scholar 

  • Warren L (1959) The thiobarbituric assay of sialic acids. J Biol Chem 234:209–215

    Google Scholar 

Download references

Acknowledgements

We are thankful to Drs. Felipe A. Dias, Rafael Linden, Rossiane C. Vommaro, Adriane R. Todeschini, Lucia Mendonça-Previato, Jose O. Previato, and David Majerowicz for the helpful discussions and to Litiane M. Rodrigues and José de S. L. Junior for the technical assistance. The present work was supported by grants from the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCTEM). All experiments complied with current Brazilian laws.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela H. Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, L.T., Folly, E., Gomes, M.T. et al. Effects of platelet-activating factor on the interaction of Trypanosoma cruzi with Rhodnius prolixus . Parasitol Res 108, 1473–1478 (2011). https://doi.org/10.1007/s00436-010-2194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2194-2

Keywords

Navigation