Skip to main content

Advertisement

Log in

Antibody and cytokine responses to hydatid in experimentally infected Kazakh sheep with hydatidosis resistance haplotype

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Different MHC haplotype of Kazakh sheep has different resistance and susceptibility of hydatidosis. Notably, the MvaIbc-SacIIab-Hin1Iab haplotype of MHC-DRB1 exon two was associated with resistance hydatidosis. In order to analyze the antibody and cytokine responses to hydatidosis in Kazakh sheep with hydatidosis resistance haplotype, eight Kazakh sheep with the haplotype of MvaIbc-SacIIab-Hin1Iab were chosen as the test group, and other eight, which were not associated with hydatidosis resistance or susceptibility, were taken as control. After experimentally infected with hydatid orally, the blood was collected on 0, 7, 14, 30, 45, 60, 75, 90, 105, and 120 days. Serum and mRNA level of the cytokines IL-2, IFN-γ, TNF-α, IL-4, and IL-10 were evaluated by ELISA and fluorescence quantitative real-time polymerase chain reaction, respectively. The total white blood cells and leukomonocytes were determined by automation cytoanalyze. The level of IgE, IgG, and IgM were evaluated by ELISA. The results showed that the total white blood cells and leukomonocytes in test group were significantly higher than in control on 7, 45, 90, and 105 days post-infection (p.i.). The serum level of IL-2 in test group was significantly higher than in control on 45 days p.i., while the difference of IL-2 mRNA expression between test and control group was not significant. The serum level of TNF-α in test group was significantly higher than in control at 90 and 105 days p.i., and the TNF-α mRNA in test group was also significantly higher than in control on 90 days p.i. The level of IgE, IgG, and IgM in test group was higher than in control, but none was significant. The results suggested that the test group, which was predominant of Th1, could induce the protective immunity, while the control, which was predominant of Th2, could induce the susceptibility to infection of hydatidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul-Basit A, Al-Ghoury, Eman M, El-Hamshary (2010) HLA class II alleles: susceptibility or resistance to cystic echinococcosis in Yemeni patients. Parasitol Res 107:355–361

    Article  Google Scholar 

  • Adeli, Ayiguli, Chen WG (2009) The suggestions about resources and utilizing of Hazakah sheep. XinJiang animal husbandry 1:48–49, China

    Google Scholar 

  • Andersen FL, Ouhelli H, Kashani M (1997) Compendium on cystic echinococcosis. Brigham Young University, Provo, UT 84602, USA

    Google Scholar 

  • Bauder B, Auer H, Schilcher F, Gabler C, Romig T, Bilger B, Aspock H (1999) Experimental investigations on the B and T cell immune response in primary alveolar echinococcosis. Parasite Immunol 21:409–421

    Article  PubMed  CAS  Google Scholar 

  • Bresson-Hadni, Liance SM, Meyer JP, Houin R, Bresson JL, Vuitton DA (1990) Cellular immunity in experimental Echinococcus multilocularis infection. II. Sequential and comparative phenotypic study of the periparasitic mononuclear cells in resistant and sensitive mice. Clin Exp Immunol 82:378–383

    Article  PubMed  CAS  Google Scholar 

  • Craig PS (1986) Detection of specific circulating antigen, immune complexes and antibodies in human hydatidosis from Turkana (Kenya) and Great Britain, by enzyme immunoassay. Parasite Immunol 8:171–188

    Article  PubMed  CAS  Google Scholar 

  • Daeki AO, Craig PS, Shambesh MK (2000) IgG-subclass antibody responses and the natural history of hepatic cystic echinococcosis in asymptomatic patients. Ann Trop Med Parasitol 94:319–328

    PubMed  CAS  Google Scholar 

  • Dalimi A, Motamedi G, Hosseini M, Mohammadian B, Malaki H, Ghamari Z, Ghaffari FF (2002) Echinococcosis/hydatidosis in western Iran. Vet Parasitol 105(2):161–171

    Article  PubMed  CAS  Google Scholar 

  • Dematteis S, Rottenberg M, Baz A (2003) Cytokine response and outcome of infection depends on the infective dose of parasites in experimental infection by Echinococcus granulosus. Parasite Immunol 25:189–219

    Article  PubMed  CAS  Google Scholar 

  • Dessaint JP, Bout D, Wattre P, Capron A (1975) Quantitative determination of specific IgE antibodies to Echinococcus granulosus and IgE levels in sera from patients with hydatid disease. Immunology 29:813–823

    PubMed  CAS  Google Scholar 

  • Dixon JB, Jenkin PS (1995) Immunology of mammalian metacestode infections. II. Immune recognition and effector function. Helminthol 64:599–613

    Google Scholar 

  • Eckert J, Deplazes P (2004) Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 17(1):107–135

    Article  PubMed  Google Scholar 

  • Eiermann TH, Bettens F, Tiberghien P (1998) HLA and alveolar echinococcosis. Tissue Antigens 52(2):124–129

    Article  PubMed  CAS  Google Scholar 

  • Emery I, Liance M, Deriaud E, Vuitton DA, Houin R, Leclerc C (1996) Characterization of T-cell immune responses of Echinococcus multilocularis -infected C57BL/6 J mice. Parasite Immunol 18:463–472

    Article  PubMed  CAS  Google Scholar 

  • Emery I, Liance M, Leclerc CC (1997) Secondary Echinococcus multilocularis infection in A/J mice: delayed metacestode development is associated with Th1 cytokine production. Parasite Immunol 19:493–503

    Article  PubMed  CAS  Google Scholar 

  • Fang YQ, Tan Y, Yang GZ (1999) The effects of IL-2 against toxoplasma gondii infection in vivo. Immunol J 115(1):32–34

    Google Scholar 

  • Fotiadis C, Sergiou C, Kirou J, Troupis TG, Tselentis J, Doussaitou P, Gorgoulis VG, Sechas MN (1999) Experimental Echinococcus infection in the mouse model: pericystic cellular immunity reaction and effects on the lymphoid organs of immunocompetent and thymectomized mice. In Vivo 13:541–546

    PubMed  CAS  Google Scholar 

  • Godot V, Harraga S, Beurton I (2000) Resistance/susceptibility to Echinococcus multilocularis infection and cytokine profile in humans. II. Influence of the HLA B8, DR3, DQ2 haplotype. Clin Exp Immunol 121:491–498

    Article  PubMed  CAS  Google Scholar 

  • Gottstein B, Hemphill A (1997) Immunopathology of echinococcosis. Chem Immunol 66:177–208

    Article  PubMed  CAS  Google Scholar 

  • Gottstein B, Bettens F (1994) Association between HLA-DR13 and susceptibility to alveolar echinococcosis. J Infect Dis 169:1416–1423

    Article  PubMed  CAS  Google Scholar 

  • Hashemi Tabar GR, Borji H (2010) Antibody responses to hydatid cyst in experimentally infected lambs. World Appl Sci J 8(8):1001–1006

    CAS  Google Scholar 

  • Hill AVS, Allsopp CEM, Kwiatkowski D (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  PubMed  CAS  Google Scholar 

  • Jenkins DJ, Romig T, Thompson RCA (2005) Emergence re-emergence of Echinococcus spp.a global update. Int J Parasitol 35:1205–1219

    Article  PubMed  CAS  Google Scholar 

  • Jiang CP (2001) Parasite infection and cytokine. Chin J Parasit Dis Con 14(2):150–153

    Google Scholar 

  • Khabiri AR, Bagheri F, Assmar M, Siavashi MR (2006) Analysis of specific IgE and IgG subclass antibodies for diagnosis of Echinococcus granulosus. Parasite Immunol 28:357–362

    Article  PubMed  CAS  Google Scholar 

  • Khaled M, Al-Qaoud, Sami K, Abdel-Hafez (2008) The induction of T helper type 1 response by cytokine gene transfection protects mice against secondary hydatidosis. Parasitol Res 102:1151–1155

    Article  Google Scholar 

  • Li Y, Yan JL, Li J (2005) Investigation and analysis of epidemic conditions of hydatidosis disease of sheep in Xinjiang. J Shihezi UniversityNatural Sci 23:60–64, China

    CAS  Google Scholar 

  • Meyer CG, Gallin M, Erttmann KD (1994) HLA-D alleles associated with generalized disease, localized disease, and putative immunity in Onchocerca volvulus infection. Proc Natl Acad Sci USA 91:7515–7524

    Article  PubMed  CAS  Google Scholar 

  • Moore KW, deWaal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  • Rausch RL (1995) Life cycle patterns and geographic distribution of Echinococcus species. In: Thompson RCA, Lymbery AJ (eds) Echinococcus and hydatid disease CAB International. Oxon, UK

    Google Scholar 

  • Pinon JM, Poirriez J, Lepan H, Geers R, Penna R, Fernandez D (1987) Value of isotypic characterization of antibodies to Echinococcus granulosus by enzyme-linked immuno-filtration assay. Eur J Clin Microbiol 6:291–295

    Article  PubMed  CAS  Google Scholar 

  • Rogan MT (1987) Echinococcus granulosus. Studies on the development of the metacestode tegument. University of Salford, UK

    Google Scholar 

  • Rogan MT, Craig PS, Zehyle E, Masinde G, Wen H, Zhou P (1992) In vitro killing of taeniid oncospheres, mediated by human sera from hydatid endemic areas. Acta Trop 51:291–296

    Article  PubMed  CAS  Google Scholar 

  • Rigano R, Buttari B, Profumo E, Ortona E, Delunardo F, Margutti P, Mattei V, Teggi A, Sorice M, Siracusano A (2007) Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response. Infect Immun 75:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Li RY, Jia B, Zhang WJ, Zhao ZS, Shi GQ, Shen H, Peng Q (2010) Analysis of the Relationship between MHC-DRB1 gene polymorphism and hydatidosis in Kazakh sheep. Asian Aust J Anim Sci 23(9):1145–1151

    CAS  Google Scholar 

  • Sterla S, Sato H, Nieto A (1999) Echinococcus granulosus human infection stimulates low avidity anticarbohydrate IgG2 and high avidity antipeptide IgG4 antibodies. Parasite Immunol 21:27–34

    Article  PubMed  CAS  Google Scholar 

  • Touil-Boukoffa C, Sanceau J, Tayebi B, Wietzerbin J (1997) Relationship among circulating interferon, tumor necrosis factor-α, and interleukin-6 and serologic reaction against parasitic antigen in human hydatidosis. J Interferon Cytokine Res 17:211–217

    Article  PubMed  CAS  Google Scholar 

  • Vuitton DA (2003) The ambiguous role of immunity in echinococcosis: protection of the host or of the parasite? Acta Trop 85:119–132

    Article  PubMed  CAS  Google Scholar 

  • Zhang WB, Allen GR, Donald PM (2008) Mechanisms of immunity in hydatid development disease: implications for vaccine. J Immunol 181:6679–6685

    PubMed  CAS  Google Scholar 

  • Wei XL, Ding JB, Xu Y, Wen H, Lin RY (2004) Change of cytokines in mice with Echinococcus multilocularis infection. Chin J Parasitol Parasit Dis 22(6):361–364

    Google Scholar 

  • Zhang W, Li J, McManus DP (2003) Concepts in immunology and diagnosis of hydatid disease. Clin Microbiol Rev 16:18–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the people who helped us for the present study. This study was supported by a grant from the Natural Science Foundation of China (30660124) to Prof. Bin Jia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Jia.

Additional information

Ren-Yan Li and Qiang Peng contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, RY., Peng, Q., Jia, B. et al. Antibody and cytokine responses to hydatid in experimentally infected Kazakh sheep with hydatidosis resistance haplotype. Parasitol Res 108, 1131–1137 (2011). https://doi.org/10.1007/s00436-010-2155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2155-9

Keywords

Navigation